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Abstract

We consider a supply chain with tree network structure where external demands follow in-

dependent compound Poisson processes and each stage controls the inventory of one product

by an installation base-stock policy. The inventories in the supply chain are either reviewed

continuously or periodically in time. The lead-times are stochastic and sequential. Unsatisfied

demands at each stage are fully backordered. We characterize the backorder (or stock-out)

delay for each unit of a demand at each stage of the supply chain, and present an exact and

systematic approach to analyze various material flow topologies in tree networks. For supply

chains under continuous-review base-stock policies, we demonstrate the similarities and struc-

tural differences between compound Poisson demand and Poisson demand. We also compare

and contrast the supply chains under continuous-review base-stock policies with those under

periodic-review base-stock policies. Based on the analyzes, we present simple and tractable

approximations which facilitate efficient coordination of the installation inventory policies at all

stages with the objective of minimizing the system-wide inventory cost subject to certain service

requirements of the external customers. We demonstrate the effectiveness of the coordination

by numerical studies.

Key words: Evaluation and coordination, installation inventory policies, compound Poisson de-

mand, continuous-review, periodic-review, stochastic sequential lead-time, tree network
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1 Introduction

The control of inventories in complex network of production and distribution facilities poses a sub-

stantial challenge to many manufacturing and logistics firms. Because of the inherent uncertainties

in demand, manufacturing and transportation processes, companies often keep millions of dollars

of inventory in their supply networks in order to provide satisfactory service to external customers

(Feigin 1999).

Due to the complexities of many real world supply chains and the internal organizational barri-

ers, simple and easily implementable installation inventory policies are often employed in practices.

Installation inventory policies require minimum information transferring among different facilities

in a firm, and more importantly, they allow each facility to manage its inventory autonomously. To

execute an installation policy, a facility only needs to know its local demand processes (from imme-

diate downstreams) and order status (from immediate upstreams). Examples can be found in many

industries, such as computer (Lin, et al. 2000), electronics (Lee and Billington 1993) and consumer

packaged products (Graves and Willems 2000). Studies of these examples demonstrate that proper

coordination of installation policies at different facilities could result in significant inventory cost

reduction and customer service improvement.

In this paper, we consider a class of supply chains with tree structure where external demands

follow independent compound Poisson processes. The processing cycle times and transportation

lead-times are stochastic, sequential and exogenous. Each stage controls its inventory by either a

continuous-review or a periodic-review installation base-stock policy. Our objective is to charac-

terize the performance metrics of these supply chains, and to develop simple and tractable approx-

imations which allow for efficient and effective coordination of the installation policies at all stages

of the network.

For continuous-review supply chains with compound Poisson demand, we characterize the stock-

out delay for each unit in a demand at each stage of the supply chain, and provide a unified and

exact approach to analyze various network topologies, such as serial, pure assembly, pure distribu-

tion and assembly-distribution systems (see Sections 3.3-3.5 for definitions). We then demonstrate

the similarities and structural differences between supply chains facing compound Poisson demand

and those facing Poisson demand. Based on the exact analysis, we present simple approximations

which serve as a basis for system optimization subject to type 2 fill rate constraints within cer-

tain committed service times. The similarities and differences between continuous-review supply
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chains and periodic-review supply chains are characterized, and the analysis and approximations

are extended to the supply chains where each stage employs a periodic-review base-stock policy.

Numerical studies are conducted to identify the conditions under which the approximations are

reasonably accurate, and to demonstrate the effectiveness of the solutions.

The continuous-review model can be applied to low volume but high risk items such as those

carried by service part supply chains, where batch demand arrivals are common and the inventories

are managed by continuous time base-stock policies. We refer the reader to Sherbrooke (1968),

Muckstadt (1973) and Graves (1985) for real world examples. Muckstadt (2004) provides an excel-

lent overview. The periodic-review model can be applied to high volume items carried by supply

chains where inventories are reviewed periodically and are managed by base-stock policies. Real

world examples can be found in Lee and Billington (1993) and Graves and Willems (2000).

This paper is organized as follows: we review the related literature in Section 2. In Section 3,

we characterizes the performance metrics of various network topologies for the continuous-review

supply chains; while in Section 4, we present the analysis for the periodic-review supply chains.

Approximations are presented and optimization problems are formulated in Section 5. Numerical

studies are conducted in Section 6. Finally, we conclude the paper in Section 7.

2 Literature Review

Inventory control in multi-stage supply chains has been studied extensively over the past forty years.

The related literature to this paper is voluminous. We do not attempt to provide an exhaustive

review of all the related work, rather, we focus on most related papers and refer the reader to

Federgruen (1993), Porteus (2002) and Zipkin (2000) for excellent reviews.

For serial systems with stochastic demand, the optimal policies are characterized by Clark and

Scarf (1960), Muharremoglu and Tsitsiklis (2002) and Parker and Kapuscinski (2004) in various

settings. For assembly systems with stochastic demand but constant lead-times, we refer to Schmidt

and Nahmias (1985) for insights on the structure of the optimal policy, to Rosling (1989) for the

characterization of optimal policy in multi-stage assembly system, and to Chen (2000) for the

analysis of batch ordering assembly systems.

For more general supply chains, such as a tree structured network with random demand and

stochastic lead-times, the optimal inventory policy remains unknown. An alternative approach is

policy evaluation and optimization, that is, given a certain inventory policy for each stage, evaluate
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and/or optimize the performance of the entire system. There is a rich literature in this area.

For serial and distribution systems with installation inventory policies, we refer the reader to the

following work: Sherbrooke (1968, 1986), Muckstadt (1973), Deuermeyer and Schwartz (1981),

Graves (1985, 1996), Zipkin (1991), Lee and Moinzadeh (1987a, b), Sovoronos and Zipkin (1988,

1991), Glasserman and Tayur (1995, 1996), Axsater (1993a, 2000). For serial and distribution

systems with echelon inventory policies, we refer the reader to Chen and Zheng (1994), Chen and

Zheng (1997) and Gallego and Zipkin (1999). Axsater (2002) provides an excellent survey. For

assembly systems with non-zero lead-times, we refer the reader to Song (1998, 2002), Song and Yao

(2000), Lu and Song (2004) for Poisson demand and i.i.d. lead-times, Zhao and Simchi-Levi (2005)

for Poisson demand and stochastic sequential lead-times, and finally, Song (2000) for models with

constant lead-times and compound Poisson demand. Song and Zipkin (2002) provides an excellent

literature review.

A few recent work developed unified approaches to analyze supply chains with more general

network structures which include serial, assembly and distribution systems, e.g., Lee and Billington

(1993), Graves and Willems (2000), Ettl, et al. (2000) and Simchi-Levi and Zhao (2005). These

work are most related to this paper. Detailed reviews of these papers are provided by Graves and

Willems (2002) and Simchi-Levi and Zhao (2005). Here, we focus on the differences and similarities

between these work and this paper.

One key element of these work is to characterize or determine the delays due to stockout at each

stage of the supply chain. Lee and Billington (1993) considers periodic review supply chains and

derive simple approximations for the delays due to stockout at each stage of the network. The focus

of Lee and Billington (1993) is on performance evaluation. In contrast, this paper provides exact

analysis and focuses on system optimization. Graves and Willems (2000) considers similar supply

chains with tree structure under the guaranteed service assumption, that is, if a demand cannot be

satisfied within the committed lead-time at a stage due to stockout, the stage has resource other

than the on-hand inventory to satisfy the demand. Therefore, the service is 100% guaranteed at all

internal stages and the lead-times are constants. In this paper, we assume that unsatisfied demands

are backordered until the on-hand inventory becomes available (full backorders).

Assuming full backorders, Ettl, et al. (2000) develops a model to evaluate and optimize supply

chains with compound Poisson demand and continuous-review base-stock policies. While Ettl, et

al. (2000) models the lead-times by i.i.d random variables, we model the lead-times by stochastic
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sequential random variables. The model of stochastic sequential lead-times, i.e., the transit time,

is formally proposed by Sovoronos and Zipkin (1991). In this model, the processing cycle times

and transportation lead-times are mutually independent and are also independent of the system

state. Furthermore, consecutive orders cannot cross over, and hence Palm’s theorem (Palm 1938)

cannot be applied. Sovoronos and Zipkin (1991) points out that this lead-time model may be more

realistic than the i.i.d. lead-time model in some real world applications, see Zipkin (2000) for more

discussions. Simchi-Levi and Zhao (2005) considers tree structure supply chains with stochastic

sequential lead-times where each stage controls its inventory by a continuous-review base-stock

policy. For point demand processes, the authors derived sample path based recursive equation for

the backorder delay at each stage of the supply chain; while for independent Poisson demands, they

characterized the performance of various network topologies.

As Simchi-Levi and Zhao (2005) point out, compound Poisson demand significantly complicates

the probabilistic analysis of tree structure supply chains, partly because different units in the same

demand face statistically different backorder delays at each stage, partly because the supply chains

facing compound Poisson demands have different dynamics than those facing Poisson demands;

see also Zipkin (1991, page 405). Exact analysis and/or approximations are developed for various

serial and distribution systems facing compound Poisson demand, see Graves (1985), Zipkin (1991),

Axsater (2000) and reference therein. So far, exact analysis of general assembly-like systems with

stochastic sequential lead-times and compound Poisson demand is not available. We also lack of a

systematic and exact approach that can handle all material flow topologies in the more general tree

networks. Furthermore, approximations and efficient algorithms need to be developed to compute

the optimal or near optimal stock levels at all stages so as to minimize the system-wide inventory

cost subject to certain service level requirements of the external customers. We refer the reader to

Axsater (2002) and Section 5 for the importance of approximation techniques in optimizing “larger”

size problems.

This paper takes one step in filling these gaps. Its main contribution is providing an exact and

systematic approach to analyze tree structure supply chains facing compound Poisson demands,

where the lead-times are stochastic and sequential, and each stage controls its inventory by either

a continuous-review bases-stock policy or a periodic review base-stock policy. The approach serves

as a basis for comparing and contrasting analytically various supply chains with either compound

Poisson demand or Poisson demand, under either continuous-review or periodic-review. Finally,
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the exact analysis allows us to develop and test tractable approximations, which lead to efficient

coordination of relatively large systems (see Section 6).

3 The Continuous-Review Supply Chains

In this section, we consider the tree structure supply chains where each stage manages one product

and controls its inventory by a continuous-time base-stock policy with a non-negative base-stock

level. Each stage in the supply chain consists of a processing facility and a storage facility. It

could be a store, a distribution center or a manufacturing plant. The processing cycle time at each

stage (i.e., the time between item inception to finishing production), the transportation lead-time

between every two stages and the lead-times from external suppliers are assumed to be stochastic,

sequential and independent of the system state. External demands follow independent compound

Poisson processes. The demand process faced by any internal stage can be determined by the bill of

materials, and it is still compound Poisson due to the continuous-time base-stock policy. Demands

at each stage are satisfied as much as possible from on-hand inventory. The unsatisfied demands

are fully backordered and are satisfied on a FCFS basis as the on-hand inventory becomes available.

Each stage converts possibly multiple items into one final item. We assume that one unit of the final

item at each stage requires only one unit of each input item. Generalizations of this assumption is

discussed in Section 7. Lastly, the service requirement of the external customers at one stage can

be specified by a committed service time and a type 2 fill rate.

The supply chain can be mapped into a graph (N ,A) with the node set N and edge set A.

The nodes represent the stages in the supply chain, and are denoted by 1, · · · , K. An arc in A
represents a pair of nodes i, k ∈ N that have the demand and supply relationship, and are denoted

by (i, k) ∈ A. It is convenient to assign an index n to each unit in a demand faced by any node, so

that the smaller the n, the demand unit has higher priority and therefore should be satisfied prior

to other units in the same demand but with larger indices. We define the following notation,

• Xk(n): the backorder delay for the nth unit of a demand at node k.

• Wk(n): the inventory holding time of the corresponding item at stage k that satisfies the nth

unit of a demand.

• Lk(n): the total replenishment lead-time for the nth unit of an order placed by node k.

• Pk: the processing cycle time at node k.
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• ti,k: the transportation lead-time from node i to k, (i, k) ∈ A.

• Sk: the maximum of the lead-times from external suppliers at node k. Sk = 0, if node k does

not have an external supplier.

• hk: inventory holding cost per item per unit of time at node k.

• sk: base-stock level at node k.

• λk: demand rate at node k.

• Dk: demand size at node k. Dk is an integer-valued random variable with Pr{Dk > 0} = 1.

If node k faces external demand, then we define τk and βk to be the committed service time and

the type 2 fill rate at node k respectively. Among these parameters, Pk, ti,k, Sk, λk, Dk, τk and

βk are inputs; Xk(n) or sk are decision variables. Let Dmaxk be the maximum possible value that

Dk can take. According to conventions, we denote a+ = max{a, 0}, and let E(·), V (·) and σ(·) be

the mean, variance, and standard deviation of a random variable, respectively. In the following

sections, we characterize the backorder delays for different units in the same demand in various

network topologies. For simplicity, we call pure assembly systems by assembly systems and pure

distribution system by distribution systems.

3.1 Analysis of A Single Stage

Consider a stage k ∈ N . Suppose a demand of size y arrives at time t, we ask the following two

questions: (1) when is the corresponding order placed at this stage that satisfies the nth unit of

this demand? where 1 ≤ n ≤ y; (2) what is the index of the unit in the corresponding order that

satisfies the nth unit of this demand? In this section, we develop an approach based on the backward

method of Zhao and Simchi-Levi (2005) to address these questions. While Zhao and Simchi-Levi

(2005) considers Poisson demand and therefore only needs to focus on question (1) for n = 1, here

we need to address both questions for compound Poisson demand.

We first define the following notations with respect to t. Let Dk,1, Dk,2, . . . , be the sizes of

demand arrivals prior to t, where Dk,1 is the size of the most recent demand prior to t, Dk,2 is

the size of the second most recent demand, and so on. In a similar vein, let νk,1, νk,2, . . . , be the

demand interarrival times prior to t, where νk,1 is the time between the most recent demand and t,
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Figure 1: The time line of a single-stage system.

νk,2 is the time between the second most recent demand and the most recent demand, and so on.

See Figure 1 for a visual aid.

Clearly, if n > sk, the corresponding order for the nth unit of the current demand must be

placed at time t, i.e., the corresponding order is triggered by the current demand. This is true

because the inventory position, sk, is just enough to satisfy up-to the skth unit of the current

demand. To answer the second question, we first note that there are sk items on-hand or incoming

right before t. Then the assumption of stochastic sequential lead-times implies that the nth unit of

the current demand will be satisfied by the mth item in the corresponding order, where m = n−sk.

If n ≤ sk but n + Dk,1 > sk, then the corresponding order for the nth unit of the current

demand must be placed at time t − νk,1. To see this, first note that n ≤ sk implies that the

inventory position right before t is enough to cover the nth unit, thus the corresponding order

must be placed at or before t − νk,1. On the other hand, n + Dk,1 > sk implies that the inventory

position right before t − νk,1 is not sufficient to cover the nth unit, hence the corresponding order

must be placed at or after t− νk,1. To summarize, the corresponding order must be placed exactly

at t − νk,1. To identify the unit in the corresponding order that satisfies the nth unit, we combine

Dk,1 with y into one demand. Then the nth unit in the current demand becomes the Dk,1 + nth

unit in the combined demand (due to FCFS). Since there are sk units on-hand and incoming right

before t−νk,1, the nth unit in the demand y is satisfied by the mth unit in the corresponding order,

where m = Dk,1 + n − sk.

For j = 2, 3, . . . , s, if n + Dk,1 + · · · + Dk,j−1 ≤ sk but n + Dk,1 + · · · + Dk,j > sk, then the

corresponding order for the nth unit of the current demand must be placed at time t−νk,1−. . .−νk,j.

This is true because n + Dk,1 + · · ·+ Dk,j−1 ≤ sk implies that the inventory position right before
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Figure 2: The renewal process generated by {Dk,j, j ≥ 1}.

t−νk,1 −· · ·−νk,j−1 is enough to cover the nth unit of the current demand, thus the corresponding

order must be placed at or before t−νk,1−· · ·−νk,j . On the other hand, n+Dk,1 + · · ·+Dk,j > sk

implies that the inventory position right before t− νk,1 − · · ·− νk,j is not sufficient to cover the nth

unit, hence the corresponding order must be placed at or after t− νk,1 − · · ·− νk,j . To identify the

unit in the corresponding order that satisfies the nth unit, we combine Dk,j, Dk,j−1, . . . , Dk,1 and

y into one demand, then the nth unit in the current demand becomes the Dk,j + . . . + Dk,1 + nth

unit in the combined demand (due to FCFS). Since there are sk units on-hand and incoming right

before t−νk,1−. . .−νk,j , the nth unit in demand y is satisfied by the mth unit in the corresponding

order, where m = Dk,1 + · · ·+ Dk,j + n − sk.

The analysis so far is similar, in principle, to that of Zipkin (1991); except that the later is

based on the forward method, i.e., identifying the demand unit that will be satisfied by the order

triggered by the current demand unit. The analysis introduced here is based on the backward

method, i.e., for each demand unit, identifying the corresponding unit in the corresponding order

that satisfies this demand unit. As we will see, it can be applied to tree supply networks under

either continuous-review or periodic-review base-stock policies.

For any 1 ≤ n ≤ y, we define random variable Jk(n) so that the corresponding order for the

nth unit of the current demand is placed at time t − Tk(Jk(n)) (see Figure 1) where

Tk(Jk(n)) =
Jk(n)∑
j=1

νk,j . (1)

We also define Mk(n) to be the index of the unit in the corresponding order that satisfies the nth

unit.

In view of the above analysis, Jk(n) and Mk(n) can be characterized as follows. Let {Nk(i), i ≥
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0} be the renewal process generated by the demand size process {Dk,j, j ≥ 1} (see Figure 2). Then,

Jk(n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if n > sk

Nk(sk − n) + 1 otherwise,
(2)

where Jk(n) can choose any value from {0, 1, 2, . . . , sk − n + 1}.
Mk(n) is related to the remaining life process {Ok(i), i ≥ 0} associated with {Nk(i), i ≥ 0} (see

Kulkarni 1995, page 433, for a definition).

Mk(n) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

n − sk, if n > sk

Ok(sk − n), otherwise.
(3)

Given n, both Mk(n) and Jk(n) depend on the base-stock level sk and the demand size process

{Dk,j, j ≥ 1}. The joint distribution of Mk(n) and Jk(n) can be characterized by

Pr{Mk(n) = m, Jk(n) = 0} = 1{n>sk ,m=n−sk} (4)

Pr{Mk(n) = m, Jk(n) = j} =
sk−n∑
l=j−1

Pr{Dk,1 + . . . + Dk,j−1 = l}Pr{Dk,j = m − n + sk − l}, (5)

m = 1, 2, . . . , Dmaxk; j = 1, 2, . . . , sk − n + 1.

In the case of n ≤ sk, the dependence between Jk(n) and Mk(n) is determined by the dependence

between Nk(s−n) and Ok(s−n). In the special case of Poisson demand, it is easily seen from Eqs.

(2)-(3) that Pr{Mk(n) = 1} = 1 and Pr{Jk(n) = sk} = 1 (see also Simchi-Levi and Zhao 2005).

The backorder delay for the nth unit of a demand and the inventory holding time for the

corresponding item that satisfies this unit are given by,

Xk(n) = [Lk(Mk(n)) − Tk(Jk(n))]+, (6)

Wk(n) = [Tk(Jk(n)) − Lk(Mk(n))]+. (7)

Note that Eqs. (6)-(7) depend on the arrival time of the demand. We suppress the dependence

without causing confusion. The total replenishment lead-time, Lk(Mk(n)), in Eqs. (6)-(7), depends

on the backorder delay(s) of the Mk(n)th unit of the order placed by node k to its immediate

upstream stage(s) at time t − Tk(Jk(n)) (see Figure 1). Applying the method of this section to
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Figure 3: Time line of a serial system.

each of upstream nodes, we can characterize their backorder delays. However, Lk(·) also depends

on the network topology, which will be analyzed in the following subsections. The key idea of our

approach is that for each unit of an external demand, we identify the corresponding order as well

as the corresponding unit in that order placed at each stage of the supply chain that eventually

satisfies this unit of demand.

3.2 Serial Systems

Consider a serial supply chain with nodes k = 1, 2, · · · , K where node K receives external supplies,

node k supplies node k − 1, and node 1 faces external demand. For any node k, consider the nth

unit of a demand that arrives at time t. Xk(n) and Wk(n) are determined by Eqs. (6)-(7). Since

the order placed by node k is a demand at node k + 1, Lk(m) in Eqs. (6)-(7) for any Mk(n) = m

is given by,

Lk(m) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

SK , if k = K

Xk+1(m) + tk+1,k + Pk, otherwise,
(8)
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where Xk+1(m) is the backorder delay of the mth unit in the order placed by node k (the demand

received by stage k + 1) at time t − Tk(Jk(n)). Xk+1(m) can be characterized in the same way as

Xk(n). See Figure 3 for a visual aid.

Unlike the supply chains with Poisson demand (see Simchi-Levi and Zhao 2005, Proposition

3.8), Lk(Mk(n)) now depends on Tk(Jk(n)) because Mk(n) depends on Jk(n). Nevertheless, note

that Tk(·), k = 1, 2, . . . , K are the sums of non-overlapping demand interarrival times (Figure 3), it

follows from the compound Poisson demand and the transit time assumptions that the serial supply

chain with compound Poisson demand can be decomposed into K single stage systems, as follows:

we first characterize XK(n) for all possible 1 ≤ n by Eqs. (6) and (8); then we determine LK−1(n)

for all n by Eq. (8). XK−1(n) can next be characterized by Eq. (6) and the joint distribution of

Mk(n) and Jk(n) (see Eqs. 4-5). We can repeat the procedure until k = 1.

Chen and Zheng (1994) and Gallego and Zipkin (1999) provide exact characterizations of serial

supply chains facing compound Poisson demand. The difference between their approaches and

ours is that we focus on the backorder delay of each unit in a demand while they focus on the

backorders. For phase-type transit times and demand sizes, Zipkin (1991) gives an exact analysis

of the probability distributions of the backorder delays in serial and distribution systems.

3.3 Assembly Systems

Consider a pure assembly system where nodes k = 1, 2, . . . , K supply node 0, and node 0 is the

only customer of each node k. Following Song and Zipkin (2002), we make the committed stock

assumption, i.e., when a demand arrives and some of its required components are in stock but

others are not, we put the in-stock components aside as “committed stock”.

For node 0, consider the nth unit of a demand that arrives at time t. By Eqs. (6)-(7),

X0(n) = [L0(M0(n))− T0(J0(n))]+, (9)

W0(n) = [T0(J0(n)) − L0(M0(n))]+, (10)

where L0(m) for any M0(n) = m is given by

L0(m) = max
k=1,2,...,K

{Xk(m) + tk,0} + P0, (11)

and Xk(m) = [Lk(Mk(m))− Tk(Jk(m))]+ for all k.
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Figure 4: Time line of an assembly system.

First note that all nodes k = 1, 2, . . . , K receive the corresponding order placed by node 0 (that

satisfies the nth unit of the demand at t) at the same time, t − T0(J0(n)) (see Figure 4). Thus,

T0(·) is not overlapping with Tk(·) for any k. It follows from the compound Poisson demand and

the transit time assumptions that one can first determine L0(m) for all m, and then characterize

X0(n) and W0(n) by Eqs. (9)-(10).

To characterize L0(m), we need to consider the maximum of Xk(m) + tk,0 where Xk(m), k =

1, 2, . . . , K, are dependent because they share the identical index m, and the identical demand

process prior to t − T0(J0(n)) (see Figure 4). To demonstrate the dependence, we define D0,j

and ν0,j for j ≥ 1 at node 0 in the same way as Dk,j and νk,j in Section 3.1 but with respect to

t − T0(J0(n)). We also define {N0(i), i ≥ 0} to be the renewal process generated by {D0,j, j ≥ 1},
and {O0(i), i ≥ 0} to be the associated remaining life process. Lastly, we index the supplying nodes

so that s1 ≤ s2 ≤ · · · ≤ sK .

First, Jk(m) and Mk(m) are dependent across k = 1, 2, . . . , K due to the identical demand

size process among nodes k = 1, 2, . . . , K. If m ≤ s1, then for 1 ≤ j1 ≤ j2 ≤ · · · ≤ jK and any

m1, m2, . . . , mK ,

Pr{J1(m) = j1, M1(m) = m1, . . . , JK(m) = jK , MK(m) = mK}
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= Pr{N0(s1 − m) = j1 − 1, O0(s1 − m) = m1, . . . , N0(sK − m) = jK − 1, O0(sK − m) = mK}.(12)

Note that all components share the same processes, N0(·) and O0(·). For other sequence of

j1, . . . , jK, the probability in Eq. (12) equals zero. If sk+1 ≥ m > sk for some k, then Eq.

(12) can be simplified by focusing only on nodes k + 1, . . . , K.

Second, given j1 ≤ j2 ≤ . . . ≤ jK , Tk(jk) are dependent across k = 1, 2, . . . , K due to the

identical demand interarrival times among all k = 1, 2, . . . , K. According to Zhao and Simchi-Levi

(2005),

Pr{T1(j1) = t1, T2(j2) = t2, . . . , TK(jK) = tK}

= Pr{
j1∑

l=1

ν0,l = t1}Pr{
j2∑

l=j1+1

ν0,l = t2 − t1} · · ·Pr{
jK∑

l=jK−1+1

ν0,l = tK − tK−1}. (13)

An assembly system with compound Poisson demand is analytically more challenging than

an analogous system with Poisson demand because all the component nodes face not only the

common demand interarrival times, but also the common demand size process. Therefore, the first

dependence (Eq. 12) is unique for the system with compound Poisson demand, even though the

second dependence (Eq. 13) holds for both systems.

3.4 Distribution Systems

Consider a pure distribution system where node 0 is the only supplier of multiple customer nodes

k = 1, 2, · · · , K. For node k, consider the nth unit of a demand that arrives at time t. By Eqs.

(6)-(7),

Xk(n) = [Lk(Mk(n)) − Tk(Jk(n))]+, (14)

Wk(n) = [Tk(Jk(n)) − Lk(Mk(n))]+, (15)

where Lk(m) for any Mk(n) = m satisfies,

Lk(m) = X0(m) + t0,k + Pk, (16)

and

X0(m) = [L0(M0(m)) − T0(J0(m))]+. (17)
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Figure 5: Time line of a distribution system. Bars of different darkness represent demands from
different customers

Tk(·), Jk(·) and Mk(·) depend on the demand process at node k, while T0(·), J0(·) and M0(·)
depend on the superimposed demand process from all nodes k = 1, 2, . . . , K (see Figure 5 for an

example of K = 2). Observe that T0(·) does not overlap with Tk(·) for any k, the assumptions

of independent compound Poisson process and transit time implies that one can decompose the

distribution system into K + 1 single stage systems, as follows: we first characterize X0(m) and

then Lk(m) for all m; then, we determine Xk(n) and Wk(n) for each k and each n.

Zipkin (1991) points out that orders of different node k may experience different stockout delays

at node 0. Here we provide a simple characterization. From the above analysis, it is clear that

the backorder delays at node 0, X0(Mk(n)), are generally statistically different for the same n

but different customer node k = 1, 2, . . . , K, because the distribution of Mk(n) (see Eq. 3), which

depends on the demand size process at node k, may vary across different node k. Thus, distribution

systems with compound Poisson demand are different from those with Poisson demand, because in

the later, the backorder delays at node 0 are statistically the same for all customer nodes k.

3.5 Assembly-Distribution Systems

Consider a set of assembly nodes, if some of their immediate supplying nodes are the same, then

we call the network of these assembly nodes and their immediate supplying nodes a assembly-

distribution system. Figure 6 depicts two simple examples of such systems. Note that system (a)
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Figure 6: Examples of assembly-distribution systems.

has a tree structure; although system (b) does not have a tree structure, but it satisfies the condition

that there is at most one directed path between every two nodes. In this paper, we focus on tree

structure supply chains. As we will see, the performance analysis method and approximations, but

not the optimization method, can be extended to handle system (b).

In this section, we focus on the systems (a) and (b) in Figure 6. The same method can be applied

to more general systems where there is at most one directed path between every two nodes. For node

1 in the system (a), consider the nth unit of a demand that arrives at time t. X1(n) and W1(n) can

be characterized by Eqs. (6)-(7) if we replace subscript k by 1, where L1(m) = X3(m)+t3,1 +P1 for

any m, and X3(m) = [L3(M3(m))−T3(J3(m))]+. As in distribution systems, T1(·), J1(·) and M1(·)
depend on the demand process at node 1 while T3(·), J3(·) and M3(·) depend on the superimposed

demand process from nodes 1 and 2.

For node 2 in the system (a), consider the nth unit of a demand that arrives at time t. X2(n)

and W2(n) can be characterized by Eqs. (6)-(7) if we replace subscript k by 2. As in assembly

systems, L2(m) = maxk=3,4{Xk(m) + tk,2} + P2 for any m, and

X3(m) = [L3(M3(m))− T3(J3(m))]+ (18)

X4(m) = [L4(M4(m))− T4(J4(m))]+. (19)

However, Jk(m) and Mk(m) (or Tk(·)) are dependent across k = 3, 4 in a different way from that

described by Eq. (12) (Eq. (13), respectively) in pure assembly systems because nodes 3 and 4 face

different demand process, i.e., node 3 faces the superimposed demand process from nodes 1 and 2

while node 4 faces the demand process only from node 2. Figure 7 provides a visual aid, where
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Figure 7: Time line of the assembly-distribution system (a).

the light bars represent demands from node 2, and the dark bars represent demands from node 1.

Compare to pure assembly systems (Figure 4), the dependences among the backorder delays of the

supplying nodes (e.g., X3(·) and X4(·)) are weaker in assembly-distribution systems because their

demand processes are no longer identical.

The system (b) in Figure 6 can be analyzed in a similar way. For instance, consider node 2 and

the nth unit of a demand that arrives at time t. X2(n) and W2(n) can be characterized in the same

way as in system (a), but now L2(m) = maxk=4,5,6{Xk(m) + tk,2} + P2 for any m, where X4(m),

X5(m) and X6(m) depend on the demand process prior to t − T2(J2(n)) faced by node 4, 5 and 6

respectively. It is important to note that these demand processes are dependent but not identical

because they share some but not all common demand arrivals.

3.6 Performance Measures

To determine the cost measures and the service levels at node k, we need to consider an arbitrary

demand unit (or a randomly chosen demand unit, equivalently) at this node. Let pk,n be the long-

run proportion of demand units that are the nth unit of a demand at node k, it is well known that

(e.g., Sigman 2001),

pk,n = Pr{Dk ≥ n}/E(Dk). (20)
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Define Xk and Wk for an arbitrary demand unit as follows,

Pr{Xk ≤ x} =
∑
n≥1

pk,nPr{Xk(n) ≤ x} (21)

Pr{Wk ≤ w} =
∑
n≥1

pk,nPr{Wk(n) ≤ w}. (22)

Xk is the backorder delay of an arbitrary demand unit at node k, and Wk is the inventory

holding time of the corresponding item at node k that satisfies an arbitrary demand unit. Clearly,

E(Xk) =
∑
n

pk,nE(Xk(n)), (23)

E(Wk) =
∑
n

pk,nE(Wk(n)). (24)

By Little’s law, the expected backorders and the expected on-hand inventory at node k are given

by

E(Bk) = E(Xk)λkE(Dk), (25)

E(Ik) = E(Wk)λkE(Dk). (26)

The type 2 fill rate, βk, within a committed service time τk, is given by,

βk =
∑
n

pk,nPr{Xk(n) ≤ τk}. (27)

If node k is an assembly node, then in addition to the on-hand inventory of the finished good,

Ik, we also need to consider the component inventories, I i
k, ∀(i, k) ∈ A. These inventories are held

at node k without being processed because the corresponding units of other required components

are not yet replenished. By Little’s law,

E(I i
k) = λkE(Dk)

∑
n

pk,nE(W i
k(n)), (28)

where

W i
k(n) = max

{l|(l,k)∈A}
{Xl(Mk(n)) + tl,k} − Xi(Mk(n)) − ti,k. (29)

The expected value of other types of inventories, i.e., the pipeline inventories due to the processing

cycle times and the transportation lead-times are determined by the demand processes and the
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transit times, and thus they are constants.

4 The Periodic-Review Supply Chains

In this section, we consider the tree structure supply chains where each stage uses a periodic-review

base-stock policy. Other assumptions remain the same as in Section 3. The review periods of

different stages can be different. Without loss of generality, we assume that the review periods, Rk,

k = 1, 2, . . . , K, are nested, i.e., whenever a stage reviews its inventory and makes order decisions,

all stages that receives supply from this stage also review inventories and make order decisions (we

point out that the same assumption is made by Graves 1985 and Axsater and Rosling 1993 for

installation policies).

At each node, demand in one period is satisfied in the order of its arrival while demands

in consecutive periods are satisfied on a FCFS basis. We denote demand in a review period at

node k to be D̃k, and denote the maximum possible value that D̃k can take to be D̃maxk. By

the assumptions that external demands follow independent compound Poisson processes, and the

review periods are nested, D̃k in different review periods are integer-valued i.i.d random variables,

with Pr{D̃k < 0} = 0 and Pr{D̃k = 0} > 0. Clearly, D̃k is generated by the compound Poisson

process with rate λk and size Dk, which is the superposition of the external demand processes faced

by the nodes that are either directly or indirectly supplied by node k.

In this paper, we ignore the customer waiting time within one review period, and assume that

demands arrive at the end of each review period. This assumption holds true for internal stages

when all stages in a supply chain share the same review period. This assumption is also a reasonable

approximation when the review periods are sufficiently small with respect to the transportation

lead-times and processing cycle times. We refer the reader to Zipkin (2000) Sections 4.3.1 and 9.3.1

for more discussions on modeling demand occuring only at discrete time points. Thus, the demand

process at any node k can be viewed as a batch demand process with random size D̃k and fixed

interarrival time Rk. As in Section 3, each unit in D̃k are indexed so that the smaller the index,

the higher the priority.

As in the continuous-review supply chains, we can define assembly-distribution systems in

periodic-review supply chains. The analysis of such systems is an extension of those of pure as-

sembly and pure distribution systems in Sections 4.3-4.4. Since the extension is similar to that of

Section 3.5, we delete the analysis here to save space.
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4.1 Analysis of A Single Stage

Consider a single node k. Suppose that the demand realized during period (t − Rk, t] is y, then

for the nth unit of this demand (1 ≤ n ≤ y), we ask the same two questions as in Section 3.1: (1)

when is the corresponding order placed at stage k that satisfies this unit of this demand? (2) what

is the index of the unit in the corresponding order that satisfies this unit of demand?

To answer these questions, we define the following notations with respect to t. Let D̃k,j be the

demand realized in the period (t − (j + 1)× Rk, t− j × Rk] for j ≥ 1. Note that an order decision

is made only at the end of a review period and demand is assumed to arrive only at the end of a

review period, thus the only difference between the model in Section 3.1 and the model here is the

demand size distribution and the interarrival time process. Applying the analysis of Section 3.1 to

demand process with i.i.d. size D̃k,j and fixed interarrival time Rk yields,

• if n > sk, then the corresponding order is placed at t and the index of the unit in the

corresponding order that satisfies this unit of demand is n − sk.

• If n ≤ sk and n + D̃k,1 > sk, then the corresponding order is placed at t − Rk and the index

of the unit in the corresponding order that satisfies this unit of demand is D̃k,1 + n − sk.

• In general, for j = 2, 3, . . ., if n+D̃k,1 + . . .+D̃k,j−1 ≤ sk and n+D̃k,1 + . . .+D̃k,j > sk, then

the corresponding order is placed at t− j×Rk and the index of the unit in the corresponding

order that satisfies this unit of demand is D̃k,1 + . . . + D̃k,j + n − sk.

For the nth unit of the demand, we define J̃k(n) and M̃k(n) so that the corresponding order is

placed at time t − J̃k(n) × Rk, and the index of the unit in the corresponding order that satisfies

this unit of demand is M̃k(n). Also define the processes {Ñk(i), i ≥ 0} and {Õk(i), i ≥ 0} to be the

renewal process generated by {D̃k,j, j ≥ 1}, and the associated remaining life process respectively.

Then

J̃k(n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if n > sk,

Ñk(sk − n) + 1, otherwise,
(30)

and

M̃k(n) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

n − sk, if n > sk,

Õk(sk − n), otherwise.
(31)
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Unlike the continuous-review systems (Section 3.1), Pr{D̃k,j = 0} > 0, thus we do not have an

upper bound for J̃k(n). Clearly, J̃k(n) depends of M̃k(n) because Ñk(sk−n) depends on Õk(sk−n).

In view of Eqs. (4)-(5), the joint distribution of J̃k(n) and M̃k(n) can be characterized as follows:

Pr{M̃k(n) = m, J̃k(n) = 0} = 1{n>sk,m=n−sk} (32)

Pr{M̃k(n) = m, J̃k(n) = j} =
sk−n∑
l=0

Pr{D̃k,1 + . . . + D̃k,j−1 = l}Pr{D̃k,j = m − n + sk − l}, (33)

m = 1, 2, . . . , D̃maxk; j = 1, 2, . . . .

Define T̃k(J̃k(n)) = J̃k(n) × Rk, and let L̃k(n), X̃k(n) and W̃k(n) be the periodic-review system

counter-part of Lk(n), Xk(n) and Wk(n), respectively. Then for the nth unit of the demand, it

follows from Eqs. (6)-(7) that

X̃k(n) = [L̃k(M̃k(n)) − T̃k(J̃k(n))]+, (34)

W̃k(n) = [T̃k(J̃k(n)) − L̃k(M̃k(n))]+. (35)

4.2 Serial Systems

Consider the serial supply chain in Section 3.2 but assume that each node uses a periodic-review

base-stock policy. By the nested review periods assumption, Rk+1 is an integer multiple of Rk for

any k ≥ 1. For the nth unit of the demand realized in period (t − Rk, t] at node k, X̃k(n) and

W̃k(n) are given by Eqs. (34)-(35). L̃k(m) for any M̃k(n) = m is determined by,

L̃k(m) = X̃k+1(ℵk+1,k(m)) + tk+1,k + Pk, (36)

where index ℵk+1,k(m) is defined as follows: ℵk+1,k(m) = m if Rk+1 = Rk; otherwise, ℵk+1,k(m) =
∑r−1

j=1 D̃k,j + m where r is uniformly distributed in {1, . . . , Rk+1/Rk}, and {D̃k,j, j ≥ 1} is defined

in the same way as that in Section 4.1 but here with respect to t − T̃k(J̃k(n)).

Eq. (36) is different from its continuous-review counter-part, Eq. (8), in ℵk+1,k(·), due to the

review periods. On the other hand, similar to the continuous-review systems, L̃k(M̃k(n)) here

depends on T̃k(J̃k(n)) because M̃k(n) depends on J̃k(n). Finally, we can also decompose the serial

supply chain under periodic-review base-stock policies into K single-stage systems by characterizing

L̃k(n) for all n sequentially from k = K to k = 1.
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4.3 Assembly Systems

Consider the assembly system in Section 4.3 where nodes k = 1, 2, . . . , K supply the assembly node

0, and each node uses a periodic-review base-stock policy. By the nested review periods assumption,

Rk, k = 1, 2, . . . , K are integer multiples of R0. For the nth unit of the demand realized in the review

period (t − R0, t] at node 0, Eqs. (34)-(35) imply that

X̃0(n) = [L̃0(M̃0(n))− T̃0(J̃0(n))]+, (37)

W̃0(n) = [T̃0(J̃0(n)) − L̃0(M̃0(n))]+, (38)

where L̃0(m) for any M̃0(n) = m is given by,

L̃0(m) = max
k=1,2,...,K

{X̃k(ℵk,0(m)) + tk,0} + P0, (39)

and X̃k(m′) for any ℵk,0(m) = m′ is

X̃k(m′) = [L̃k(M̃k(m′))− T̃k(J̃k(m′))]+. (40)

In this case, ℵk,0(m) = m if Rk = R0; otherwise, ℵk,0(m) =
∑rk−1

j=1 D̃0,j + m where rk is uniformly

distributed in {1, . . . , Rk/R0}, and {D̃0,j, j ≥ 1} is defined in the same way as {D̃k,j, j ≥ 1} in

Section 4.1 but here with respect to t − T̃0(J̃0(n)). We also define {Ñ0(i), i ≥ 0} to be the renewal

process generated by {D̃0,j, j ≥ 1}, and {Õ0(i), i ≥ 0} to be the associated remaining life process.

Similar to the continuous-review systems in Section 3.3, one can first determine L̃0(m) for all m,

and then characterize X̃0(n) and W̃0(n) by Eqs (37)-(38).

To characterize L̃0(m), we note that all nodes k = 1, 2, . . . , K receive the order placed by node

0 that satisfies the nth unit of the demand realized in (t − R0, t] at the same time, t − T̃0(J̃0(n)).

Consider first the case of Rk = R0 for k = 1, 2, . . . , K, thus ℵk,0(m) = m. Clearly, X̃k(m) are

dependent for k = 1, 2, . . . , K because the nodes k = 1, 2, . . . , K face the identical demand size

process, and therefore, J̃k(m) and M̃k(m) are dependent across k. To characterize the dependence,

we index the nodes k = 1, 2, . . . , K so that s1 ≤ s2 ≤ · · · ≤ sK . If m ≤ s1, then for 1 ≤ j1 ≤ j2 ≤
· · · ≤ jK and any m1, m2, . . . , mK,

Pr{J̃1(m) = j1, M̃1(m) = m1, . . . , J̃K(m) = jK , M̃K(m) = mK}
= Pr{Ñ0(s1 − m) = j1 − 1, Õ0(s1 − m) = m1, . . . , Ñ0(sK − m) = jK − 1, Õ0(sK − m) = mK}.(41)
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For other sequence of j1, . . . , jK, the probability in Eq. (41) equals zero. Eq. (41) is similar in

principle to Eq. (12) of the continuous-review systems. However, unlike the continuous-review

systems, T̃k(jk), k = 1, . . . , K are not no longer dependent for any given sequence of jk due to the

fixed review periods.

In the case of non-identical Rk for k = 0, 1, . . . , K, the analysis is significantly complicated by

many possible combinations of rk, k = 1, 2, . . . , K, as well as the non-identical demand size process

{D̃k,j} at different node k. Exact analysis (not reported here) is feasible but long and tedious.

Nevertheless, J̃k(ℵk,0(m)) and X̃k(ℵk,0(m)) are still dependent across k due to the identical order

process {D̃0,j, j ≥ 1} placed by node 0 to all nodes k = 1, . . . , K.

4.4 Distribution Systems

Distribution systems under periodic-review policies are different from the continuous-review counter-

parts because customer nodes can place orders to the distribution node at the same time. Therefore,

the distribution node faces the decisions of inventory allocation, i.e., how to allocate its on-hand

inventory to the customer nodes when total demand exceeds the supply?

The inventory allocation problem has been studied extensively in the literature, we refer the

reader to Jackson (1988), Graves (1996) and reference therein. Graves (1996) introduces the “virtual

allocation rule” which works as follows: the distribution node commits inventory to the external

demand in the sequence of the demand arrivals rather than the sequence at which the customer

nodes place orders. Virtual allocation is not the optimal allocation rule. For independent Poisson

external demands, Graves (1996) demonstrates the tractability and effectiveness of this allocation

rule, and Axsater (1993b) presents an exact analysis of 2-level distribution systems under this

rule. In this section, we consider the distribution system in Section 3.4 but assume that each stage

uses an installation periodic-review base-stock policy and the distribution node employs the virtual

allocation rule. The objective is to extend the analysis in Sections 4.1-4.3 to these distribution

systems facing compound Poisson demand.

Due to the nested review periods assumption, the review period at node 0, R0, is an integer

multiple of Rk for all k. Consider a customer node k, and the nth unit of the demand realized in

review period (t − Rk, t]. By Eqs. (34)-(35),

X̃k(n) = [L̃k(M̃k(n)) − T̃k(J̃k(n))]+, (42)
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W̃k(n) = [T̃k(J̃k(n)) − L̃k(M̃k(n))]+, (43)

where L̃k(m) for any M̃k(n) = m is given by,

L̃k(m) = X̃0(ℵ0,k(m)) + t0,k + Pk, (44)

and X̃0(m′) for any ℵ0,k(m) = m′ is,

X̃0(m′) = [L̃0(M̃0(m′))− T̃0(J̃0(m′))]+. (45)

ℵ0,k(m) now depends on the review periods as well as the inventory allocation rule. When Rk = R0,

ℵ0,k(m) can be determined as follows: let Uk,m be the time from the beginning of a review period

to the arrival of the mth unit of the demand at node k in the same review period. Furthermore, let

D̃′
0,k(U) be the total external demand realized during time U at all customer nodes of node 0 other

than node k. According to the virtual allocation rule, Pr{ℵ0,k(m) = m + i} = Pr{D̃′
0,k(Uk,m) = i}

for any i ≥ 0 because ℵ0,k(m) = m + D̃′
0,k(Uk,m). To characterize Pr{D̃′

0,k(Uk,m) = i}, we first

note that Uk,m is uniformly distributed in one review period, Rk, by Theorem 5-13 and Corollary

5-13 of Heyman and Sobel (1984). For compound Poisson process, the generating function of

the total demand realized in a given time interval is provided by Heyman and Sobel (1984, page

151). Therefore, Pr{D̃′
0,k(Uk,m) = i} can be computed by conditioning on Uk,m. When Rk �=

R0, ℵ0,k(m) =
∑rk−1

j=1 D̃k,j + D̃′
0,k((rk − 1) × Rk + Uk,m) where rk is uniformly distributed in

{1, . . . , R0/Rk}, and {D̃k,j, j ≥ 1} is defined in the same way as that in Section 4.1 but with

respect to t − T̃k(J̃k(n)).

Similar to the continuous-review systems in Section 3.4, M̃k(·) and ℵ0,k(·) typically have dif-

ferent distributions for different customer node k. Therefore, the backorder delays at node 0 are

statistically different across k = 1, 2, . . . , K. Furthermore, the distribution system here can also

be decomposed into K + 1 single-stage systems, as follows: we first characterize X̃0(m′) for each

m′, which allows us to determine L̃k(m) for each m. Then, we compute X̃k(n) and W̃k(n) by Eqs.

(42)-(43).
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4.5 Performance Measures

For node k, we define p̃k,n to be the long-run proportion of demand units that are the nth unit of

a demand at this node, where n ≥ 1. Note that Pr{D̃k = 0} > 0, then

p̃k,n = Pr{D̃k ≥ n|D̃k > 0}/E(D̃k|D̃k > 0),

= Pr{D̃k ≥ n}/E(D̃k). (46)

We define X̃k and W̃k as the counter-part of Xk and Wk (Section 3.6) in the periodic-review systems,

that is,

Pr{X̃k ≤ x} =
∑
n≥1

p̃k,nPr{X̃k(n) ≤ x} (47)

Pr{W̃k ≤ w} =
∑
n≥1

p̃k,nPr{W̃k(n) ≤ w}. (48)

Then,

E(X̃k) =
∑
n

p̃k,nE(X̃k(n)), (49)

E(W̃k) =
∑
n

p̃k,nE(W̃k(n)). (50)

We can determine the performance measures and service levels at node k, as follows,

E(B̃k) = E(X̃k) × E(D̃k)/Rk, (51)

E(Ĩk) = E(W̃k) × E(D̃k)/Rk, (52)

β̃k =
∑
n

p̃k,nPr{X̃k(n) ≤ τk}. (53)

If node k is an assembly node, then the expected component inventories, E(Ĩ i
k), ∀(i, k) ∈ A is

given by,

E(Ĩ i
k) =

∑
n

p̃k,nE(W̃ i
k(n))× E(D̃k)/Rk (54)

where

W̃ i
k(n) = max

{l|(l,k)∈A}
{X̃l(ℵl,k(M̃k(n))) + tl,k} − X̃i(ℵi,k(M̃k(n))) − ti,k. (55)

Finally, E(D̃k)/Rk in the above equations can also be expressed by λkE(Dk).
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5 Approximations and Optimization

The analyzes in Sections 3-4 provide bases for exact evaluation and optimization of small size prob-

lems. But for larger problem with many stages, exact evaluation is not computationally tractable

due to the dependent backorder delays in the assembly and assembly-distribution systems. This is

true because the exact characterization of the system performances requires the knowledge of the

joint probability distribution of the backorder delays at all stages, and therefore, a tree structure

supply chain generally cannot be decomposed into multiple single-stage systems where each stage

can characterized separately. On the other hand, the exact analyzes in Sections 3-4 provide bases

for developing approximations. Thus, the objective of this section is to develop simple and tractable

approximations for both the continuous-review and the periodic-review supply chains, and based

on which, we formulate and solve the optimization problems.

5.1 The Continuous-Review Supply Chains

We first ignore the correlations in the assembly and the assembly-distribution systems, i.e., we focus

only on the marginal distribution of the backorder delay at each stage of the network rather than

the joint distribution. Using this approximation, tree structure supply chains can be decomposed

into multiple single-stage systems where each stage can be characterized separately.

Consider node k, given the distribution of Lk(m) for all m, sk and the demand process λk and

Dk, we can compute the distribution of Xk(n) for each n by Eq. (6) as follows,

Pr{Xk(n) ≤ x} =
∑

m≥1,j≥0

Pr{Mk(n) = m, Jk(n) = j}Pr{Lk(m)− Tk(j) ≤ x}. (56)

Note that as sk − n → ∞, Pr{Mk(n) = m} → pk,m (Kulkarni 1995) which does not depend on n.

Hence,

Pr{Xk(n) ≤ x} →
∑
m≥1

pk,m

∑
j≥0

Pr{Jk(n) = j}Pr{Lk(m)− Tk(j) ≤ x} as sk → ∞. (57)

Define random variable Lk so that Pr{Lk = t} =
∑

m≥1 pk,mPr{Lk(m) = t}, then by Eqs. (56)-

(57), we can approximate Xk(n) by

Xk(n) ≈ (Lk − Tk(Jk(n)))+, (58)
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where Lk is independent of Tk(Jk(n)) for any n.

In view of the fact that the limiting distribution of Pr{Mk(n) = m} is identical to pk,m (the

long-run proportion of demand units that are the mth unit of a demand at stage k), Lk is related

to the stockout delays of an arbitrary demand unit at the immediate suppliers of node k. Indeed,

pk,m = pk′,m in systems where node k is the only customer of node k′. In distribution systems

where node k′ also face demand from other nodes, pk,m �= pk′,m in general. But since computing

backorder delay for each demand unit at each stage is time demanding, we use Xk′ (based on pk′,m,

see Eq. 21) to approximate the backorder delay at node k′ experienced by an arbitrary unit in

orders of node k (based on pk,m). This approximation allows us to focus on Xk rather than Xk(n),

and therefore significantly reduce the computing time.

To further improve numerical efficiency, we utilize the following 2-moment approximation (see,

e.g., Graves 1985 and Zipkin 1991) for Xk: given E(Lk) and V (Lk), sk and the demand process λk

and Dk, we compute E(Xk) and V (Xk) as follows,

1. compute the mean and variance of the lead-time demand, Yk, where

E(Yk) = E(Lk)λkE(Dk), (59)

V (Yk) = λkE(D2
k)E(Lk) + (λkE(Dk))2V (Lk). (60)

Then fit the lead-time demand distribution by a Negative Binomial distribution which matches

the first 2 moments.

2. Compute the expected backorders E(Bk) and the variance of the backorders V (Bk) by

Bk = (Yk − sk)+. (61)

3. Finally, compute E(Xk), V (Xk) and E(Ik) as follows,

E(Xk) = E(Bk)/λk/E(Dk) (62)

V (Xk) = (V (Bk) − λkE(D2
k)E(Xk))/(λkE(Dk))2, (63)

E(Ik) = sk − E(Yk) + E(Bk). (64)

We refer the reader to Zipkin (1991, 2000) for more discussions.
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One important advantage of these approximation is their simplicity, which allows for fast system

optimization. However, if stage k is a distribution node, then the backorder delays at node k to all

its customers are identical under these approximations. By Eqs. (61)-(62), E(Xk) has a monotonic

relationship with sk. Thus, we can use either E(Xk) or sk as the decision variable at stage k.

Zipkin (1991) studies the accuracy of this 2-moment approximation in serial systems. In Section

6, we will develop insights into the conditions under which the approximations introduced in this

section are reasonably accurate in tree structure supply chains.

If node k is supplied by other nodes in the network, say node i, then the replenishment lead-time

from node i to node k can be approximated by Xi + ti,k. If node k is an assembly node, then by

Eqs. (28)-(29), the expected component inventory level at node k can be approximated by

E(I i
k) ≈ λkE(Dk)E[ max

l|(l,k)∈A
{Xl + tl,k} − Xi − ti,k], (65)

where the mean and variance of the maximum of independent random variables can be computed

by Clark’s approximation (Clark 1961).

If node k faces external demand, then it follows from Eqs. (27) and (58) that the service level,

the type 2 fill rate within τk, at node k can be approximated by

∑
n≥1

pk,nPr{Lk − Tk(Jk(n)) ≤ τk} ≥ βk. (66)

Define Δn = Lk−∑Jk(n)
j=1 νk,j−τk. Given Lk, sk, τk and demand process λk and Dk, we approximate

Δn by a Normal random variable with mean and variance determined as follows (see, e.g., Zipkin

(2000) Section C.2.3.8),

E(Δn) = E(Lk)− E(Jk(n))/λk − τk, (67)

V (Δn) = V (Lk) + E(Jk(n))/λ2
k + V (Jk(n))/λ2

k. (68)

To determine E(Jk(n)) and V (Jk(n)), we note that if sk < n, then Jk(n) = 0 and therefore

E(Jk(n)) = V (Jk(n)) = 0; if sk ≥ n, then by Eq. (2), Jk(n) = 1+Nk(sk −n), where E(Nk(sk −n))

and V (Nk(sk − n)) can be approximated by the corresponding asymptotic value (sk − n)/E(Dk)

and (sk − n)V (Dk)/E3(Dk) (as sk − n → ∞) respectively.

We now present the optimization problem for the continuous-review supply chains. To this
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end, we define Xk to be a vector representing the backorder delays at the suppliers of node k, i.e.,

Xk = {Xi|(i, k) ∈ A}. Given the mean and variance of Xk (E(Xk) and V (Xk)), E(Xk), and the

demand process λk and Dk, we can determine sk, V (Xk) and the safety-stock carrying costs Hk at

node k. In particular,

Hk(E(Xk), V (Xk), E(Xk)) = hkE(Ik) +
∑

(i,k)∈A
hiE(I i

k). (69)

We can formulate the following mathematic program using E(Xk), k = 1, 2, . . . , K as decision

variables:

P min
K∑

k=1

Hk(E(Xk), V (Xk), E(Xk))

s.t. Lk = max{Xi + ti,k, ∀(i, k) ∈ A} + Pk, ∀k ∈ N ,

0 ≤ E(Xk) ≤ min{Qk, E(Lk)}, ∀k ∈ N ,

V (Xk) ≤ σ2
k, ∀k ∈ N ,

Pr{Xk ≤ τk} ≥ βk, for node k serving external customers.

The Qk and σ2
k are the maximum allowable expected backorder delay and delay variance at node

k, respectively. Program P is different from that of Simchi-Levi and Zhao (2005) in two ways: (1)

sk and V (Xk) are computed in a different way by Lk and E(Xk) due to the compound demand

processes, and (2) the customer service is computed in a different way. Simchi-Levi and Zhao (2005)

develops an algorithm based on dynamic programming to optimally coordinate the continuous-time

base-stock policies for supply chains with independent Poisson process and stochastic lead-times.

The same dynamic programming algorithm can be applied here. We refer the reader to Zhao and

Simchi-Levi (2005) for more discussions on the algorithm.

5.2 The Periodic-Review Supply Chains

As we illustrated in Section 4, the impact of different review periods are complex and problem

specific. In the rest of the paper, we focus on an important special case where the review periods of

all stages are identical (see also Graves and Willems 2000, 2002). Similar to the continuous-review

systems, we ignore the correlations in the assembly and the assembly-distribution systems.
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Consider node k and the nth unit of the demand realized in one review period. By Eq. (34),

Pr{X̃k(n) ≤ x} =
∑

m≥1,j≥0

Pr{M̃k(n) = m, J̃k(n) = j}Pr{L̃k(m)− T̃k(j) ≤ x}. (70)

Similar to the continuous-review systems in Section 5.1, we observe that as sk−n → ∞, Pr{M̃k(n) =

m} → p̃k,m which does not depend on n. Hence,

Pr{X̃k(n) ≤ x} →
∑
m≥1

p̃k,m

∑
j≥0

Pr{J̃k(n) = j}Pr{L̃k(m)− T̃k(j) ≤ x} as sk → ∞. (71)

Define random variable L̃k so that Pr{L̃k = t} =
∑

m≥1 p̃k,mPr{L̃k(m) = t}. Then, by Eqs.

(70)-(71), we can approximate X̃k(n) by

X̃k(n) ≈ (L̃k − T̃k(J̃k(n)))+. (72)

As in the continuous-review systems, we focus on the backorder delay for an arbitrary unit of

demand at each node, X̃k (Eq. 48). Due to the similarity between Eq. (58) and Eq. (72), we

utilize a 2-moment approximation similar to that of Section 5.1. More specifically, given E(L̃k)

and V (L̃k) at stage k, sk, Rk and the distribution of demand size D̃k, we compute E(X̃k), V (X̃k)

and E(Ĩk) as follows,

1. compute the mean and variance of the lead-time demand, Ỹk, where

E(Ỹk) = E(L̃k)E(D̃k)/Rk, (73)

V (Ỹk) = E(L̃k/Rk)V (D̃k) + V (L̃k/Rk)E2(D̃k) (74)

= E(L̃k)V (D̃k)/Rk + V (L̃k)E2(D̃k)/R2
k. (75)

Eq. (75) follows from Zipkin (2000) Section C.2.3.8. Then fit the lead-time demand distribu-

tion by a Negative Binomial distribution which matches the first 2 moments.

2. Compute the expected backorders E(B̃k) and the variance of the backorders V (B̃k) by

B̃k = (Ỹk − sk)+. (76)
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3. Finally,

E(X̃k) = E(B̃k)Rk/E(D̃k) (77)

V (X̃k) = (V (B̃k)Rk − E(X̃k)V (D̃k))Rk/E2(D̃k), (78)

E(Ĩk) = sk − E(Ỹk) + E(B̃k). (79)

For compound Poisson demand, Eqs. (73)-(79) reduce to Eqs. (59)-(64). Note that Eqs. (59)-

(64) do not depend on Rk. Under the assumptions that all stages have the same review period,

and the waiting times within one review period can be ignored, our numerical study in Section

6 indicate that these approximations are sufficiently accurate except when Rk/E(L̃k) is relatively

large, e.g., > 0.5.

If node k faces external demand, then by Eqs. (53) and (72), we can approximate the type 2

fill rate constraint as follows,

∑
n≥1

p̃k,nPr{L̃k − T̃k(J̃k(n)) ≤ τk} ≥ βk. (80)

Let Δ̃n = L̃k − ∑J̃k(n)
j=1 Rk − τk. We can approximate Δ̃n by a Normal random variable with mean

and variance determined as follows,

E(Δ̃n) = E(L̃k)− E(J̃k(n))Rk − τk, (81)

V (Δ̃n) = V (L̃k) + V (J̃k(n))R2
k. (82)

To determine E(J̃k(n)) and V (J̃k(n)), we note that if sk < n, then J̃k(n) = 0 and therefore

E(J̃k(n)) = V (J̃k(n)) = 0; if sk ≥ n, then by Eq. (30), J̃k(n) = 1+Ñk(sk−n), where E(Ñk(sk−n))

and V (Ñk(sk − n)) can be approximated by the corresponding asymptotic value (sk − n)/E(D̃k)

and (sk − n)V (D̃k)/E3(D̃k) (as sk − n → ∞) respectively.

The inventory costs can be computed in a way similar to those of continuous-review systems,

and the optimization program has the same form as program P.

6 Numerical Studies

The objective of this section is two-fold: (1) developing insights into the conditions under which

the approximations may or may not be sufficiently accurate, and (2) demonstrating the quality of
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Figure 8: The Example 1.

the solution found by the optimization algorithm. To this end, we consider two numerical examples

in the following two subsections.

6.1 A Six-Stage Example

The example is depicted in Figure 8. It consists of one final assembly, node 6, two distribution

centers, node 1 and 2, one sub-assembly, node 5, and two component manufacturing sites, node

3 and 4. We assume zero lead-times from external suppliers and zero transportation lead-times

between every two nodes, but non-zero and stochastic processing times at all nodes. The processing

times follow Erlang distributions with parameters E(P ) and n (see, e.g, Zipkin 2000). n here

should not be confused with the index of demand units. According to convention, we assume

that inventory holding cost increases as one moves downstream the supply chain. In particular,

let h3 = 1, h4 = 1.5, h5 = 2, h6 = 3 and h1 = h2 = 4. Different distribution centers can face

different demand rates, demand size distributions and provide different service levels to external

customers. Without loss of generality, let λ1 = 0.7 and λ2 = 0.3. The demand sizes at node 1 and

2 follow discrete Normal distributions with probability density functions (Pr{D1 = 1}, Pr{D1 =

2}, · · · , Pr{D1 = 7}) = (0.0062097, 0.0606, 0.2417, 0.383, 0.2417, 0.0606, 0.0062097) and (Pr{D1 =

3}, Pr{D1 = 4}, · · · , Pr{D1 = 9}) = (0.0062097, 0.0606, 0.2417, 0.383, 0.2417, 0.0606, 0.0062097).

To test the accuracy of the approximations, we first use the optimization (DP) algorithm to

find a solution and then use a Monte Carlo simulation to evaluate the solution. The Monte Carlo

simulation is based on the exact analyzes in Sections 3 and 4. In the simulation, we run 104

independent replications for each parameter set and calculate the 95% confidence interval for the

performance measures. The confidence intervals for all simulated fill rates are no larger than 1%.

The confidence intervals for all the simulated costs are no larger than 3% of their corresponding
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simulated costs.

For continuous-review systems, we conduct two numerical studies. In the first study, we fix

the lead-time parameters {n1, n2, n3, n4, n5, n6} = {5, 7, 6, 7, 8, 5} and {E(P1), E(P2), E(P3), E(P4),

E(P5), E(P6)} = {6, 6, 1, 2, 5, 6}, but vary τ1, τ2 and β1, β2, where τk, k = 1, 2 can choose each

value of {0, 2, 4}, and βk, k = 1, 2 can choose each value of {0.85, 0.9, 0.95, 0.99}. Thus, this

study has totally 144 instances. In the second study, we fix τ1 = 1 and τ2 = 2. For each

β1 = β2 = 0.85, 0.90, 0.95, 0.99, we study 100 instances with randomly generated lead-time pa-

rameters {E(P1), E(P2), E(P3), E(P4), E(P5), E(P6)} and {n1, n2, n3, n4, n5, n6}, where E(Pk) ∼
Uniform(1, 2, . . . , 10) and nk ∼ Uniform(1, 2, . . . , 10) for k = 1, 2, . . . , 6.

For each parameter set, we use the DP algorithm to determine the base-stock level at each node

and then use simulation to estimate the performance of this solution. Table 1 demonstrates the

average and maximum absolute % error in cost, the average and maximum absolute error in β1 and

β2 for the first study. The absolute percentage error in cost is defined as the absolute difference

between the simulated cost and the cost generated by the DP algorithm divided by the simulated

cost.

Table 1: The Accuracy of the approximations. Study 1 for the continuous-review systems

Avr. Abs. % Max. Abs. % Avr. Abs. Max. Abs. Avr. Abs. Max. Abs.

Error in Cost Error in Cost Error in β1 Error in β1 Error in β2 Error in β2

0.52% 1.7% 0.46% 1.66% 1.24% 3.9%

Table 2 summaries the results of the second study for the continuous-review systems. Tables 1

and 2 demonstrate that the approximations are in general sufficiently accurate for the continuous-

review systems under all combinations of the parameters examined in this paper. The largest error

is a 3.9% error on β2 (Table 1), the corresponding instance has β2 = 0.85, which indicate that the

errors may increase as β decreases. This observation is partially confirmed by Table 2, which shows

that the average and maximum errors of the cost and β2 are increasing as β1 and β2 decrease.

However, the trend is not clear for the average and maximum errors of β1.

For periodic-review systems, we conduct two numerical studies identical to those of the continuous-

review systems except that in the first study, we also vary the review period R = 0.5, 1, 2, 4, and

in the second study, we fix R = 1 for all stages. The results are summarized in Tables 3 and 4.
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Table 2: The Accuracy of the approximations. Study 2 for the continuous-review systems

β1 = β2 = Avr. Abs. % Max. Abs. % Avr. Abs. Max. Abs. Avr. Abs. Max. Abs.

Error in Cost Error in Cost Error in β1 Error in β1 Error in β2 Error in β2

0.85 0.67% 3.51% 0.93% 2.48% 2.02% 3.71%

0.90 0.64% 2.54% 0.93% 3.09% 1% 2.53%

0.95 0.46% 1.79% 1.1% 3.28% 0.64% 2.42%

0.99 0.32% 1.36% 0.79% 3.04% 0.45% 1.1%

Table 3: The Accuracy of the approximations. Study 1 for the periodic-review systems

R Avr. Abs. % Max. Abs. % Avr. Abs. Max. Abs. Avr. Abs. Max. Abs.

Error in Cost Error in Cost Error in β1 Error in β1 Error in β2 Error in β2

0.5 0.31% 1.03% 1.48% 3.65% 3.09% 6.44%

1 0.36% 1.46% 1.3% 3.03% 2.76% 5.47%

2 1.32% 3.35% 0.45% 2.32% 2.44% 5.05%

4 4.09% 8.69% 1.49% 3.14% 1.5% 3.11%

Tables 3 and 4 illustrate the average and maximum absolute % error in cost, and the average

and maximum absolute error in fill rates for all the combinations of the parameters. Specifically, the

average and maximum errors in cost are very small in all cases except when R becomes substantial

relative to the processing times, e.g., R = 4. At large R, the approximations may perform poorly

on cost but still very well on the fill rates. The average errors on type 2 fill rates are relatively

small, e.g., ≤ 3.96% (Table 4). However, the maximum errors can be sizeable especially at smaller

R, e.g., as large as 6.44% at R = 0.5 (Table 3). Interestingly, at R (= 0.5), the errors on cost are the

smallest. The accuracies on cost and fill rates are different because we use different approximations

for cost (Eq. 64) and fill rate (Eq. 80). Indeed, our numerical study of a single-stage system

(not reported here) shows that the 2-moment approximations on expected backorder delays and

cost, Eqs. (59)-(64), may subject to large % error when R is large relative to the lead-times, e.g.,

R/E(L) > 0.5; on the other hand, the fill rate approximation, Eq. (80), may perform poorly at

small R, e.g., R/E(L) < 0.1.

Examination of the instances corresponding to the largest errors in fill-rates (in Table 3) reveals
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Table 4: The Accuracy of the approximations. Study 2 for the periodic-review systems

Target Avr. Abs. % Max. Abs. % Avr. Abs. Max. Abs. Avr. Abs. Max. Abs.

β1 = β2 = Error in Cost Error in Cost Error in β1 Error in β1 Error in β2 Error in β2

0.85 0.78% 3.48% 2.03% 5.59% 3.96% 7.08%

0.90 0.5% 2.3% 1.11% 3.79% 2.89% 5.98%

0.95 0.35% 1.13% 0.62% 2.73% 1.55% 3.27%

0.99 0.27% 0.89% 0.58% 2.4% 0.11% 0.39%

that the instances also have relatively small target fill-rates (e.g., 85%). This observation is further

confirmed by Table 4, which clearly demonstrates that as the target type 2 fill-rates increase from

85% to 99%, both the average and the maximum errors in fill-rates and cost decrease. A careful

examination of the instance corresponding to the largest errors in fill-rates in Table 4 also shows

that the instances have relatively small nk (e.g., 1). Note that the coefficient of variation (c.v.) of

the processing time Pk equals to 1/
√

nk. The impact of nk can be explained as follows: the Normal

distribution is a poor fit for the random variables representing lead-times when n is close to 1.

Indeed, when n = 1, the lead-time distribution is exponential, and Clark’s method (to compute the

maximum of random variables) based on Normal approximation can be far from accurate (Clark

1961).

Given that we ignore the dependency among the lead-times, and we only consider the first two

moments of the lead-times, the approximations are reasonably accurate for a range of parameters

of interest for both the continuous-review and the periodic-review systems. In particular, the

approximations perform well in the important cases when the target type 2 fill-rates are relatively

high (e.g., ≥ 95%), when the review period R is neither substantial nor negligible comparing to

the replenishment lead-time at each stage, and when the lead-time c.v.s are moderate (e.g. < 0.5).

One important advantage of the approximations is that they are simple, and therefore they are

computationally tractable even for larger size problems (see a 22 node and 21 arcs example in

Section 6.2).

We now demonstrate the quality of the solutions obtained by the DP algorithm. To this end,

we compare the DP solution to a solution found by a simulation-based search algorithm. Since

the simulated fill rates of the DP solution may not closely match with the targets, we adjust the

input fill rates and run the DP algorithm repetitively until the target fill rates fall into the 95%
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Table 5: Comparison between the solutions found by the DP and the search algorithm. Continuous-
review systems

(β1, β2) {s1, s2, s3, s4, s5, s6} {s1, s2, s3, s4, s5, s6} Cost Cost % diff.

The search solu. The DP solu. (Search) (DP) in costs

(0.90, 0.90) {24, 17, 23, 7, 6, 21} {27, 20, 6, 0, 15, 21} 133.66 140.77 5.32%

(0.90, 0.96) {23, 22, 27, 0, 0, 28} {22, 23, 12, 11, 18, 21} 153.68 161.43 5.04%

(0.95, 0.90) {30, 17, 13, 15, 19, 14} {33, 20, 6, 0, 15, 21} 156.33 163.6 4.65%

(0.96, 0.96) {29, 22, 27, 15, 12, 14} {28, 22, 6, 0, 15, 31} 175.9 182.9 3.98%

(0.98, 0.95) {37, 21, 18, 7, 12, 21} {36, 21, 6, 0, 9, 34} 203.4 208.9 2.7%

(0.95, 0.99) {29, 34, 23, 0, 0, 28} {28, 33, 6, 0, 9, 34} 220.6 222.8 1%

(0.98, 0.99) {36, 33, 27, 3, 0, 28} {36, 33, 6, 0, 9, 34} 248.03 255.47 3%

confidence interval of the simulated fill rates. In the search algorithm, we first identify an upper

bound s′k for the base-stock level at each node. Then, for any base-stock level vector {s3, s4, s5, s6} ∈
⊗

k=3,4,5,6{0, 
s′k/10�, 
2s′k/10�, · · · , s′k}, we use simulation to evaluate the average system cost and

to choose s1 and s2 so that the simulated fill-rates closely matches with the targets. Table 5

(Table 6) summarizes the results for the continuous-review systems (the periodic-review systems,

respectively) where τ1 = 1, τ2 = 2, {E(P1), E(P2), E(P3), E(P4), E(P5), E(P6))} = {3, 3, 4, 4, 3, 1}
and {n1, n2, n3, n4, n5, n6} = {6, 5, 2, 8, 6, 3}. β1 and β2 are allowed to vary. R = 1 for the periodic-

review systems. All costs are evaluated by simulation.

Table 6: Comparison between the solutions found by the DP and the search algorithm. Periodic-
review systems

(β1, β2) {s1, s2, s3, s4, s5, s6} {s1, s2, s3, s4, s5, s6} Cost Cost % diff.

The search solu. The DP solu. (Search) (DP) in costs

(0.91, 0.92) {22, 17, 27, 0, 0, 28} {27, 21, 6, 0, 15, 21} 136.31 145.08 6.43%

(0.90, 0.95) {23, 23, 23, 0, 0, 28} {27, 26, 6, 0, 9, 24} 155.3 162.4 4.57%

(0.95, 0.91) {28, 17, 23, 3, 0, 28} {32, 20, 6, 0, 15, 21} 155.67 159.35 2.36%

(0.96, 0.96) {30, 23, 23, 0, 0, 28} {34, 26, 6, 0, 15, 21} 181.21 189.1 4.35%

(0.98, 0.95) {34, 21, 18, 11, 6, 28} {37, 22, 12, 11, 18, 21} 209.21 215.84 3.17%

(0.96, 0.99) {30, 43, 13, 11, 12, 21} {29, 39, 12, 11, 18, 21} 261.4 251.35 -3.84%

(0.98, 0.98) {36, 29, 23, 3, 0, 28} {37, 29, 12, 11, 18, 21} 235.2 244.4 3.91%
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The percentage difference in costs in Tables 5-6 is defined as the difference between the cost of

the DP solution and the cost of the search-based solution divided by the cost of the search-based

solution. On a Pentium 1.67 GHZ laptop, the search algorithm takes about 3 hours to solve for one

instance while the DP algorithm takes about 2-3 seconds. We first note that in all cases, the cost

of the DP solution is reasonably close to that of the search-based solution. The DP solutions tend

to perform better as the target fill-rates increase in both the continuous-review and the periodic-

review systems. This observation is consistent to our earlier observations on the accuracy of the

approximations. Since the approximations are more accurate for higher target fill-rates, the DP

algorithm based on the approximations tends to find better solutions. When the fill-rates are in

the lower 90%s, the DP solutions can be inferior to the Search solutions by as much as 6.43%.

Interestingly, we find that in one case, the DP solution out-performs the search solution. This is

possible because the search algorithm only evaluates a subset of the possible base-stock levels.

6.2 A 22 Nodes 21 Arcs Example

In this section, we consider a more elaborate example with 22 nodes and 21 arcs, see Figure 9

for the network structure of the example. This example is inspired by a real world problem, the

Bulldozer supply chain (see Graves and Willems 2002). The objective of this section is to further

demonstrate the accuracy of the approximations and to show the efficiency of the optimization

algorithm.

We use the same inventory holding costs and the expected processing times as those in Graves

and Willems. But we consider stochastic processing times, and stochastic, non-zero transporta-

tion lead-times with the means generated randomly according to Uniform{1, 10}, see Appendix

III of Simchi-Levi and Zhao (2005) for the costs and lead-times data of the example. The exter-

nal supply lead-times are zero. We assume that the external demand follows compound Poisson

process with λ = 1, and demand size distribution (Pr{D1 = 1}, Pr{D1 = 2}, · · · , Pr{D1 = 7})
= (0.0062097, 0.0606, 0.2417, 0.383, 0.2417, 0.0606, 0.0062097). As in the real world problem, the

review period R = 1 for all nodes. The target customer service at the final assembly is specified by

τ and β where τ = 0.

We study the impact of the lead-time uncertainty and the target β on the accuracy of the

approximations. To this end, we assume that all processing times and transportation lead-times

follow Erlang distributions with the same coefficient of variation, i.e., the same n. n varies from
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Figure 9: The Example 2.

4, 9 to 16 while β = 0.85, 0.9, 0.95, 0.99. While this example is computationally prohibitive for the

simulation-based search algorithm, it takes around 1 minute for the DP algorithm to generate a

solution on a Pentium 1.67 GHZ laptop.

For each parameter set, we use the DP algorithm to determine the base-stock level at each

node and then use simulation to estimate the total cost and fill rate. Table 7 presents the absolute

percentage difference in costs between simulation and the approximation, and Table 8 shows the

absolute difference in fill rates between simulation and the target. The confidence intervals for all

simulated fill rates are no larger than 1%, and the confidence intervals for all the simulated costs

are no larger than 2% of their corresponding simulated costs.

Table 7: The accuracy of the approximations in cost. Example 2

β = 0.85% 0.90% 0.95% 0.99%

n = 4 (c.v. = 0.5) 1.99% 0.52% 0.73% 0.18%

9 (0.33) 0.77% 0.94% 0.25% 0.23%

16 (0.25) 0.51% 1.21% 0.13% 0.13%
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Table 8: The accuracy of the approximations in fill rate. Example 2

β = 0.85% 0.90% 0.95% 0.99%

n = 4 (c.v. = 0.5) 5.73% 6.53% 5.58% 3.26%

9 (0.33) 2.28% 3.52% 2.7% 1.6%

16 (0.25) 1.46% 1.65% 1.83% 1.07

Table 7 shows that the cost approximations are sufficiently accurate for all combinations of the

lead-time c.v.s and the target fill rates. The approximations become more accurate as the lead-time

c.v.s decrease or as the target fill rate increases. Table 8 illustrates that the fill rate approximations

are reasonably accurate when the lead-time c.v.s are relatively small or when the target fill rate

is high. When the lead-time c.v.s. are relatively large, e.g., > 0.33, the fill rate approximation

may perform quite poorly. As we explain before in Section 6.1 that the Clark’s method may

yield sizeable errors when n is close to 1. Since this example has as many as 8 assembly operations,

Clark’s method is used repetitively which accumulates errors. Therefore, n has a substantial impact

on the accuracy of the approximations in this example.

Given a target service level, e.g., τ = 0 and β = 0.95%, we can adjust the input fill rate

repetitively for the DP algorithm until the simulated fill rate of the DP solution closely matches

the target level. Numerical studies with various lead-time c.v.s reveal some interesting insights.

As in Simchi-Levi and Zhao (2005), we first observe that the system-wide inventory cost increases

significantly as the lead-time c.v. increases from 0.25, 0.33 to 0.5 (see Table 9). We also observe

that the portion of the cost due to component inventories (i.e., I i
k) is quite substantial, and it tends

to increase as the lead-time c.v. increases. The base-stock levels obtained by the DP algorithm is

listed in Table 10 in Appendix I.

Table 9: The impact of lead-time uncertainty

n Lead-time c.v. Total Cost (Simul.) Component Inventory Cost/Total Cost

4 0.5 $2,804,638 29.56%

9 0.33 $2,046,915 28.46%

16 0.25 $1,751,459 26.8%
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7 Concluding Remarks

In this paper we present an exact and systematic approach to analyze tree-structure supply chains,

where the external demands follow independent compound Poisson processes, and the lead-times are

stochastic, sequential and exogenously determined. For these supply chains under either continuous-

review or periodic-review base-stock policies, we characterize the backorder delay for each unit of

a demand at all stages. We analyze the similarity and the structural differences in various material

flow topologies between the continuous-review supply chains with compound Poisson demands and

those with Poisson demand. We also compare and contrast the continuous-review supply chains

with the periodic-review supply chains. In order to efficiently coordinate the inventory policies in

the supply chains, we present simple and numerically tractable approximations. Numerical study

shows that the approximations are reasonably accurate for a wide range of parameters, and the

optimization algorithm can find the optimal or close to optimal solutions efficiently.

Many challenges remain. We conclude the paper by identifying some direct extensions as well

as its limitations.

• First, multi-product supply networks with common components and subassemblies, e.g.,

assemble-to-order systems, are in general difficult to evaluate and coordinate. However, it

is interesting to note that these networks can be mapped to single-product supply networks

where each stage manages only one product. Here is how: first map each unique combina-

tion of product and facility into one stage of a single-product supply network, then, set the

parameters of the single-product network as follows: the production cycle time of a stage

is the production cycle time of the product at the facility in the original system; and the

transportation lead-time between two stages is the transportation lead-time between the two

corresponding facilties in the orginal system. While some of these single-product systems

satisfy the assumptions of this paper, and therefore, can be solved (at least approximately)

accordingly, two challenges remain: (1) the mapped single-product system may not have a

tree structure, e.g., system (b) of Figure 6; (2) the assumption of identical flow unit may not

hold, that is, one unit of different final items at one facility may require different number of

units of a common input item.

It is perhaps worth pointing out that resolving the second challenge requires an extension of

the “transit time” model. To see this, let’s consider a product at a facility, namely, stage
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k in the mapped single-product system, where assembling one unit of the product requires

multiple units of a component. Consider the nth unit of a demand that arrives at time t.

Since this unit of demand requires multiple units of the component, the corresponding orders

of these units of the component may be placed at different times, and therefore, replenished

at different times. Note that early replenished units have to wait for the last unit before

they are assembled into one unit of the product, which results in additional inventory holding

costs. Clearly, exact characterization of these inventory costs requires information about the

differences among the lead-times (including the “transit times”) of consecutive orders placed

by stage k. Therefore, one needs to know the joint distribution of the “transit times” rather

than just their marginal distributions.

• Second, we ignore the production and transportation capacity constraints in this paper. In-

corporating these constraints into tree structure supply networks pose a substantial challenge.

We refer the reader to Parker and Kapuscinski (2004) and Janakiraman and Muckstadt (2004)

for the optimal inventory policies in capacitated serial systems, to Glasserman and Tayur

(1995) and Kapuscinski and Tayur (1999) for simulation based optimization algorithms, and

to Lee and Zipkin (1992), Buzacott, Price and Shanthikumar (1993), Glasserman and Tayur

(1996) and Liu, Liu and Yao (2004) for approximations of serial supply chains.

• Thirdly, extending this approach to supply chains where each stage utilizes a batch ordering

policy is an important challenge. The difficulty comes from the non-renewal demand processes

faced by internal stages if they are the supperpositions of the order processes placed by the

downstream stages.

• Finally, more accurate and robust approximations need to be developed for supply chains with

long review periods and low target type 2 fill-rates. It is also a challenge to develop accurate

approximations for periodic-review supply chains with long and different review periods where

demand cannot be assumed to arrive only at the end of each period.
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Table 10: Solutions for example 2

node n = 4 n = 9 n = 16

Platform Group 20 5 5

Fender Group 23 9 9

Roll Over Group 5 0 0

Chassis/Platform 80 3 1

Frame Assembly 69 69 60

Case 0 0 0

Case & Frame 141 128 125

Brake Group 0 0 0

Drive Group 18 13 9

Plant Carrier 29 17 9

Final Drive & Brake 38 36 36

Engine 0 0 0

Fans 38 30 21

Dressed-out Engine 94 2 2

Boggie Assembly 17 13 9

Pin Assembly 259 206 186

Suspension Group 80 73 64

Transmission 0 0 0

Common Subassembly 90 1 5

Main assembly 88 55 146

Track Roller Frame 58 50 7

Final Assembly 159 139 130


