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In this paper, we establish an exact framework for a class of supply chains with at most one directed path between
every two stages. External demands follow compound Poisson processes, the transit times are stochastic, sequential, and
exogenous, and each stage controls its inventory by an installation base-stock policy under continuous review. Unsatisfied
demand at each stage is fully backordered. This class of supply chains includes assembly, distribution, tree, and two-level
general networks as special cases. We characterize the stockout delay for each unit of demand at each stage of the supply
chain by developing an exact and unified approach that applies to various network topologies. We also present tractable
approximations and decompositions that facilitate efficient evaluation and optimization (up to the approximations) of the
base-stock policies in industry-size problems with a tree structure. We demonstrate the effectiveness of the solution by

numerical studies.
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1. Introduction

We consider a class of supply chains where there is at most
one directed path between every two stages. A stage refers
to a unique combination of a facility and a product.
A path consists of arcs, each of which represents a direct
demand and supply relationship between two stages. Each
stage controls its inventory by an (installation) continuous-
time base-stock policy. Unsatisfied demand is fully back-
ordered. Our objective is twofold: (i) establishing an
exact framework for these supply chains facing compound
Poisson demand and stochastic sequential transit times, and
(ii) developing numerically tractable approximations that
allow efficient computation of the optimal or near-optimal
base-stock levels.

This paper is an extension of Simchi-Levi and Zhao
(2005) to supply chains with compound Poisson demand
and a more general network structure. Below, we summa-
rize works most related to this paper on modeling assump-
tions and solution approaches. We refer to Zipkin (2000),
Graves and Willems (2003), and Simchi-Levi and Zhao
(2005) for recent reviews of the related problems, motiva-
tions, and solution methods.

Exact analysis is provided for various serial and distribu-
tion systems facing compound Poisson demand; see Zipkin
(1991), Forsberg (1995), Chen (1998), Axsater (2000,
2003), and references therein. Assembly systems are analyt-
ically more challenging than distribution systems because of

the interaction among components. For assemble-to-order
(ATO) systems, exact analyses and approximations are pro-
vided for models with either constant lead times (Song
1998, 2002; Hausman et al. 1998; Agrawal and Cohen
2001), i.i.d. lead times (Song and Yao 2002, Lu et al. 2003,
Lu and Song 2005, Cheung and Hausman 1995), or stochas-
tic and sequential lead times (Zhao and Simchi-Levi 2006).
Song and Zipkin (2003) provides an excellent review.

Multilevel assembly networks with multiple endproducts
and common components are more difficult to analyze than
the assemble-to-order (ATO) systems because the lead time
at each internal stage is endogenous, which depends on the
supplying stages’ fulfillment processes and their interac-
tions. Literature in this area is limited.

De Kok and Visschers (1999) considers such a network
with constant transit times and i.i.d. demand. They devel-
oped an algorithm based on Rosling (1989) to transform the
network into a purely divergent system. Note that in this
approach, the allocation of common components is deter-
mined before the components actually arrive in inventory.
Lee and Billington (1993) considers the deskjet printer sup-
ply chain, which includes both assembly and distribution
operations. Each stage controls its inventory by an installa-
tion periodic-review base-stock policy. The authors devel-
oped simple approximations for performance evaluation.
For assembly systems, it is assumed that at most one sup-
plier can be out of stock in any period. The same approx-
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imation is utilized by Ettl et al. (2000), which develops a
model to evaluate and optimize supply chains with com-
pound Poisson demand and i.i.d. transit times. Simchi-Levi
and Zhao (2005) considers tree structure supply chains
with stochastic sequential transit times. The authors derived
sample path-based recursive equations and provided exact
analyses for various network topologies facing Poisson
demand. Approximations and decomposition techniques are
developed for fast computation. However, the exact anal-
ysis on assembly systems is limited to the pure assembly
systems.

Compound Poisson demand introduces additional chal-
lenges to the exact analysis of the multilevel assembly
networks. For example, different units of a demand face
statistically different stockout delays at each stage (Zipkin
1991, p. 405; Simchi-Levi and Zhao 2005). In addition, the
intricate interaction and dependence among components are
now driven not only by the common demand interarrival
times, but also by the common demand sizes.

This paper provides an exact framework for a class of
supply chains with compound Poisson demand and stochas-
tic sequential transit times, where there is at most one
directed path between each pair of stages. An important
special case is the two-level general network with multi-
ple end products and common components. We develop
a unified approach to characterize the stockout delay for
each unit of demand at each stage of the supply chain.
In §2, we present an exact analysis for the two-level gen-
eral network. In principle, the analysis extends to multilevel
systems. In §3, we provide numerically tractable approx-
imations (based on the exact analysis), which allow effi-
cient optimization of tree structure supply chains subject
to type 2 fill rate constraints within a certain committed
service time. In §4, we demonstrate in various numerical
examples the accuracy and efficiency of the approximation
and the quality of the solution. We conclude the paper in
§5 by identifying a few research directions.

Our approach is built on the flow unit method; see, e.g.,
Zipkin (1991), Axsater (1990), and Zhao and Simchi-Levi
(2006). The key idea is that for each unit of an external
demand, we identify, at each stage, not only the timing
at which the corresponding order is placed, but also the
index of the item in the corresponding order that satisfies
this demand unit. Applying this idea to each stage leads
to an exact and systematic way to characterize the system
performance. However, the challenge lies in the complex
dependencies among timings and indices in assembly net-
works due to the common demand size and interarrival time
processes. Indeed, the joint probability distribution of the
timings in the multiproduct ATO systems alone is an open
question (Zhao and Simchi-Levi 2006). The approach here
differs from that of Poisson demand (see, e.g., Simchi-Levi
and Zhao 2005) because in the latter all demand units face
statistically the same stockout delay, and one only needs to
identify the timing (but not the index) of the corresponding
order.

Although we provide a unified method for the supply
chains with a quite general structure, there exist more effi-
cient exact methods for two-level pure distribution sys-
tems, see, e.g., Forsberg (1995). A comparison between our
approach and Forsberg (1995) is provided in §2.3.

2. Model and Analysis

We assume that each stage utilizes an installation con-
tinuous-time base-stock policy with a nonnegative base-
stock level. We call the processing cycle time at each stage
and the transportation lead time between every two stages
the “transit times,” and assume that they are stochastic,
sequential, and exogenous (the “transit time” assumption by
Svoronos and Zipkin 1991). External demands follow inde-
pendent compound Poisson processes. The demand process
faced by each internal stage is determined by the bill of
materials, and is compound Poisson due to the continuous-
time base-stock policy. Each stage fills its demand on a
first-come, first-serve (FCFS) basis, and each individual
demand unit can be satisfied separately. Unsatisfied demand
is fully backordered. We assume that one unit of the final
item at each stage requires one unit of each input item
(see §5 for more discussion). Lastly, the service require-
ment at a stage can be specified by a type 2 fill rate
(the fraction of demand satisfied) within a committed ser-
vice time.

We map the supply chain into a graph (N, /) with the
node set N and the arc set 4. A node represents a stage in
the supply chain, and is denoted by 1, ..., K. An arc repre-
sents a pair of nodes i, k € JV' that have a direct demand and
supply relationship, and is denoted by (i, k) € s4. It is con-
venient to assign an index n to each unit of a demand faced
by a node, so that the smaller the n, the higher the priority
of the demand unit. We define the following notation,

e X, (n): stockout delay for the nth unit of a demand at
node k.

e W,(n): inventory holding time of the corresponding
item that satisfies the nth unit of a demand at stage k.

. Zk (n): total replenishment lead time for the nth unit
of an order placed by node k.

e L,: processing cycle time at node k.

e L, ,: transportation lead time from node i to k,
(i, k) € .

e /: inventory holding cost per item per time unit at
node k.

e s,: base-stock level at node k.

e A,: customer arrival rate at node k.

e D.: demand size at node k. D, is an integer-valued
positive random variable.

If node k faces external demand, we define 7, and S,
to be the committed service time and the type 2 fill rate,
respectively. Among these parameters, L;, L; (, Ay, Dy, 7,
and 3, are inputs; s, or X, (n) are decision variables. Let U,
be the maximum value of D,. Following convention, we
denote at = max{a, 0}, and let E(-), V(-), and o (-) be the
mean, variance, and standard deviation of a random vari-
able, respectively.
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2.1. Analysis of a Single Stage

Consider a node k € /' and suppose that a demand arrives
at time 7. We ask the following two questions: (1) When is
the corresponding order placed at node k that satisfies the
nth unit of this demand, where n > 1? (2) What is the index
of the item in the corresponding order that satisfies the nth
unit of this demand? Whereas one only needs to answer
question (1) for Poisson demand, we have to answer both
questions for compound Poisson demand.

We first define the following notations with respect to
time t. Let D, |, D, ,,..., be the sizes of demands that
arrive prior to ¢, where D, ; is the size of the most
recent demand prior to ¢, and so on. In a similar vein, let
Vi 1> V.2, -, be the demand interarrival times prior to f,
where v, | is the time between the most recent demand
and ¢, and so on. Figure 1 provides a visual aid.

Because of the continuous-review base-stock policy, each
order is triggered by a demand. For any n > 1, we define
J.(n) such that the corresponding order that satisfies the
nth unit of the demand (at 7) is placed at time 1 — 7, (J,(n))
(see Figure 1), where

J(n)

T, (Ji(n)) = Z Vi, j- (1)
j=1

We also define M, (n) to be the index of the item in the cor-
responding order that satisfies the nth unit of the demand
(at 7).

Clearly, if n > s, then the corresponding order for the
nth unit of the demand (at z) must be placed at time ¢,
i.e., J,(n) =0. This is true because the inventory position,
S, 1S just enough to cover the s,th unit of the demand.
To answer the second question, we first note that there are
s, items on-hand or incoming right before 7. By the tran-
sit time assumption, the nth unit of the demand is satis-
fied by the M, (n)th item in the corresponding order, where
M, (n)=n-—s,.

If n < s, but n+ Dy | > sy, then the corresponding order
for the nth unit of the demand (at ¢) must be placed at
time t — v, ie., J,(n) = 1. This is true because n < s;
implies that the inventory position right before ¢ is enough
to cover the nth unit; thus, the corresponding order must
be placed at or before # — v, ;. On the other hand, n +
D, | > s, implies that the inventory position right before
t — v, is not sufficient to cover the nth unit; hence, the
corresponding order must be placed at or after t —v; ;.

Figure 1. The time line of a single-stage system.

Dy jiy -+ Dr2 Dr

l ~ / t . Time
T, m) line

Order

To identify the item in the corresponding order that sat-
isfies the nth unit, we combine D, ; with the demand at ¢.
Then, the nth unit in the demand at ¢ is the (D, , 4+ n)th
unit in the combined demand (due to FCFS). Because there
are s, items on-hand and incoming right before # — v, |,
the nth unit in the demand (at #) must be satisfied by the
M, (n)th item in the corresponding order, where M, (n) =
D; | +n—s.

More generally, if n+ Dy + -+ Dy ;_; < s, but n+
Dy +---+ Dy ;> for j=2,3,...,5, then (1) the cor-
responding order for the nth unit of the demand (at ¢) must
be placed at time t — vy | —--- — v ;, i.e., Ji(n) = j; and
(2) the nth unit of the demand (at ) is satisfied by the
M, (n)th item in the corresponding order, where

My(n) =Dy +---+ Dy j+n—s. ()

J.(n) is related to the renewal process {N,(-)}, generated
by the demand-size process {D; ;, j > 1}, as follows:

0 if n> s,
Ji(n) = 3)
N.(s, —n)+1 otherwise,

J(n) €{0,1,2,...,5, —n+1}. Ni(s) is the number of
customer arrivals before the cumulative demand exceeds s.

M, (n) is related to the remaining life process {O.(-)}
associated with {N,(-)} (see Kulkarni 1995, p. 433, for a
definition). By Equation (2),

n—s, if n> s,
M, (n) = 4)
O, (s, —n) otherwise,

M, (n) € {1,2,...,U.}. Oy(s) is the surplus of the cumu-
lative demand over s when the cumulative demand first
exceeds s.

J.(n) and M, (n) are generally dependent random vari-
ables. Given n, the joint probability mass function of J,(n)
and M, (n) is given by

Pr{J(n) =0, M (n) =m} = 1{n>sk,m:n—sk}’ (%)
Pr{J (n) = j. M, (n) = m}
=Pr{N, (s, —n)=j— 1, O (s, —n) = m}

J
=Pr{ZDk!]=sk—n+m,Dk’jZm} for j>1. (6)

J=1

Ifn < sk,Pr{Zj=1 Dy ,=s,—n+m,D; ; >2m}=Pr{D, ;=
s —n+m}for j=1land m=1,...,(U — s, +n)*;
PT{ZL] D, =s,—n+mD,;>m}= ;L;LPr{Dk,l
+-+ Dy =UPr{D ;=5 —n— 1+ m} for j=
2,...,5, —n+land m=1,...,min{jU, — s, + n, U }*.
In the special case of Poisson demand, Equations (3) and
(4) imply that Pr{J,(n) =s,} =1 and Pr{M,(n) =1} =1,
which is consistent with Simchi-Levi and Zhao (2005).
The stockout delay for the nth unit of a demand and
the inventory holding time for the corresponding item that
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satisfies this unit are given by

X, (n) = [L (M, () = T (J ()] ™)
Wi(n) = [T, (J(n)) — Ly (M, (m))]*. ®)

Clearly, 7,(j) is determined by the demand arrival pro-
cess; J,(n) and M, (n) are determined by the demand size
process. Unlike supply chains with Poisson demand (see
Simchi-Levi and Zhao 2005, Proposition 3.9), L,(M,(n))
now depends on T7,(J,(n)) because M,(n) depends
on J,(n).

The total replenishment lead time, L, (-), depends on the
stockout delay(s) at all immediate supplier(s) of node k.
Clearly, L,(-) depends on the network topology, which is
analyzed in the following section.

2.2. Two-Level General Networks

Consider node sets .¥ and &, where each node in .¥ supplies
one or more nodes in F, and each node in F is supplied
by one or more nodes in .. Nodes in # face indepen-
dent compound Poisson demand. Each node in .¥ faces an
exogenous lead time, which may vary (statistically) across
different units in an order. This assumption facilitates the
extension of the analysis here to multilevel assembly net-
works. Within each set, there is no supply-demand relation-
ship between every two nodes. Such a network is called a
two-level general network (Lesnaia 2004). Clearly, there is
at most one directed path between every two nodes in this
network. Figure 2 gives two examples where system (a) has
a tree structure but system (b) does not. In what follows,
we first analyze these examples in detail, and then provide
expressions in compact form for the general system.

Figure 2(a). We only analyze node 2 because node 1
represents a simpler case. For the nth unit of a demand that
arrives at time ¢, X,(n) and W,(n) are given by Equations
(7) and (8), where the joint distribution of J,(n) and M,(n)
is characterized by Equations (5) and (6). Conditioning on
Jy(n) = j and M,(n) = m, T,(j) follows Erlang distribution
and

Zz(m) =max{X;(m) + Ly, Xy(m) + L4,2} +L,,

where L;,, L,,, and L, are exogenous, X;(m) is the
stockout delay for the mth unit of the demand received by
node i =3, 4 at time t — T,(J,(n)) (see Figure 3). X;(m) =
[Z;(M;(m)) = T,(J;(m))]* for i =3, 4.

Figure 2. Examples of the two-level general network.
“ Y AT
4
/N I \/
K s
/\ I AN
—{6]/X A

The time line of Figure 2(a).

ey B

1 1 H 1 L 2

RIS 3

M y(m)th unit I\ Ts(Ez"")) mth unit
N

L1 4
l\ Ty(J4(m))

Figure 3.

-—

1=Ty(Jp(n))

Note that 7,(-) does not overlap with T.(-) for i =3, 4.
It follows from the assumptions of compound Poisson
demand and “transit time” that one can exactly evaluate
system performance by first computing Zz(m) for all m,
and then computing X,(n) and W,(n).

To characterize ZQ(m), we consider the maximum of
X;(m)+L;, for i =3,4, where X;(m), i =3, 4, are depen-
dent random variables because both of them depend on the
demand process from node 2 (see Figure 3). To character-
ize the joint probability distribution of X;(m) and X,(m),
we need to determine the joint probability distribution of
(J;,(m), M;(m), T;; i = 3,4). Define the shorthand notation
pUis,my, t;31=3,4) =Pr{Ji(m) = j,, M;(m) =m;, T,(j;) >
t;;1=13,4}. Because Equation (5) is an indicator function
for j, =0, we consider j; > 0 for i = 3, 4. By Equation (6),

pUi-my, t;;1=3,4)

J3
ZPT{ZDs,J‘ =s3—m+my, Dy ; >my, T;(j3) 2> t3;

j=1
Ja
Y Dy j=s,—m+my, Dy >my, T,(jy) > t4}’ ©)
=1

where D; ; and D, ; are defined in the same way as
D, ; in §2.1, but now with respect to time t — T,(J,(n)).
(J;,(m), M;(m); i = 3,4) are not independent of (7,i =
3,4) because all of them depend on the demand arrival
processes.

Note that node 3 faces demand from both nodes 1 and 2,
and node 4 faces demand only from node 2. Define D, ; and
D, ; in the same way as Dy ; in §2.1, but with respect to
time ¢t — T,(J,(n)), we can rewrite Equation (9) as follows:

pUim;, t;31=3,4)

3 I3
:Pr{ZDU +ZD2J =53 —m-+ms, Da;,ﬁ-‘ > my,
j=1 j=1 3
Ja
T3(]3) = 13; ZDz,]’ =384 — m+m4’
j=1

D, ;, = my, T,(j,) > f4}, (10)



RS
e
‘;”6
24
£
5 E
© o
o
o c
=
©
e c
5
22
23
o
g =
o <
-
© ®
nQ
O
=
=
O ®©
wn .2
£g
55
3o
==
® .9
= 0
S
°
2 E
c ©
o2
=T
O c
T ©
T
2
wn C
c 2
=l
o
2c
- O
£5
o0
= c
E -
C
(o]
8 e
35
<E
w_
IS
= C
e o
=
035
Z-c
= <

Zhao: Evaluation and Optimization of Installation Base-Stock Policies in Supply Chains with Compound Poisson Demand

Operations Research 56(2), pp. 437-452, © 2008 INFORMS

441

where JJ (J?) is the number of node 1 (node 2) demands
in the last j; demands at node 3, and 8§, represents the node
from which the last jsth demand comes. Clearly, J; and J7
are nonnegative integer random variables satisfying

J31 + Jsz =Js
and 65 chooses a value of either one or two.

Enumerating all possible outcomes of (J,, J7,
denoting them by (j3, j3, ), we arrive at

0;) and

pUi-my, t;;i=3,4)

= ¥ 1>r{ZD1 ]+ZD21

MUN R j=1

—m+ms, Dy 2> my;

Ja

sy—m—+my, D, >m4}

xPr{T;(j3) > t5,J;

The equality holds here because conditioning on
(Jy,JE, 85) = (ji, ji, 1), the arguments on demand sizes are
independent of those on demand interarrival times.

The probability on demand sizes in Equation (11) can be
evaluated exactly by identifying the common demand sizes
shared by nodes 3 and 4; see the appendix for details. To
compute the probability on demand interarrival times, we
first note that the event {J} = j3,J{ = ji, 6; = 1} means
that among the last j; demand arrivals at node 3, j; of them
are from node 1, and the j;th demand is also from node 1.
Hence, the event {T3(j3) = t3, J3 = ji. J; —13,6 =1} for

i > Oand j7>0is equlvalent to the event {Z ; L2,
]

Z (V< Z L < 2131 v, ;}, where v, ; are the

demand 1nterarr1val times at node k (k =1, 2). Hence,

Pr{T3(js) = t5, J3 = s, -732 = 63 =L T,(jy) 2 14}

i
Pr{X:V1 >

J3 2+1

t3,2v21<2v11< ZV“,

sz,j%‘} ifi=1,
-1 (12)

73 ]3+1
Pr{Zv2J t3,ZV1 i <Zv2] < Z v

sz,j>t4} if =2,
j=1
where ji > 0,j7 >0 for /=1, and jj >0, j; >0 for
[ =2. These probabilities can be evaluated exactly by con-
ditioning on the common Erlang random variables; see the

appendix.
Given p(j,,m;,t;;i = 3,4), we can express
Pr{X,(n) < x} as follows:
Pr{X,(n) < x} =) Pr{M,(n) =m, J,(n) = j}
m, j
Pr{L,(m) — T,(j) < x}. (13)

—]3,12—j3’53—l T,(jy) =1t} (11)

Conditioning on T,(j) = t2 and letting x; =x+1, — L, —
L;,and xy,=x+t,—L,— L, ,, then for x; >0 and x, > 0,

Pr{L,(m) < x+1,}
=Pr{X;(m) < x;, X,(m) < x,}
= Pr{T3(J;(m)) > Ly(M3(m)) — x,
T,(J4(m)) > 4(M4(m)) — X}
= > pGm,Li(m) —x;i=3,4). (14)

Ji-m;;i=3,4

Figure 2(b). This system differs from that in Fig-
ure 2(a) because each of the nodes 1, 2, and 3 is supplied
by two nodes, and each of these two supplying nodes serves
a different additional node. Below, we analyze node 1. The
analysis of other nodes is analogous.

Consider the nth unit of a demand at time ¢. Conditioning
on M, (n) =m, then L,(m) = max{X,(m)+ Ly ;, X5(m) +
Ls,}+ L,, where X,(m) and Xs(m) are dependent due
to the common demand process from node 1. To char-
acterize the joint probability distribution of X,(m) and
Xs(m), we determine the joint probability distribution
of (J;(m), M;(m), T;i =4,5). Consider j, >0, i =4,5,
and let p(j;, m;, t;;i =4,5) =Pr{J,(m) = j;, M;(m) = m
T.(j;) = t;;i =4, 5}. Note that apart from the demand of
node 1, each of nodes 4 and 5 serves an independent
demand from nodes 2 and 3, respectively. By a similar
analysis of Equation (10), we arrive at

p(ji’ 17 z’l_4 5)

J} J?
=Pr{ZD1’j+ZD2J=s4—m+m4,D54Jf4 > my,

j=1 j=1

T,(js) —m+ms,

VA 53
>1,5) Dy +) Dy =55
=1 j=1

Dy g2 ms TG 215}, (19
5:75

where (J/, J}) and (JJ, J?) are nonnegative integer random
variables satisfying

J411+J412=j4’ J51+J53=j5-

0, chooses a value of either one or two, and &5 chooses a
value of either one or three.

Enumerating all possible outcomes of (J},J7,8,;
J3, 02, 85) = (i, jis s jas J2. Is), Equation (15) becomes

pUi-m;, t;;i=4,5)

i
= Z Pr{ZDl,j

V(b s sy Y=L

Sy, —m+my,

i
+ Z D2,j ==
Jj=1

i 3
Dl4*lll:4 =my; .Z;Dl’j—i_.Z;Ds’j =55 _m+m5’Dls,jé5 > mS}
i= j=
X Pr{T,(jy) =1y, L = ji, P =J;. 6, =1

=
Ts(js) > 15, Js = j3. J; = j3, 85 = s} (16)
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As for Figure 2(a), we can compute the probability on
demand sizes by identifying the common demand sizes
shared by nodes 4 and 5. Details are omitted.

The probability on demand interarrival times can be char-
acterized in a way similar to Equation (12). For (8,, 65) =

(17 1)’

Pr{T,(j,) > t,, -]4l =J':’ J42 =Jfa 8, =1; T5(js) > ts,

Jl=j51,f3=j53,55=1}
]4+1

_Pr=ZV1 > t4,ZV21 <Zv1 i< Z vy i

15+1

7
Yo = IS,ZV3]<ZV1]<ZV3]} (17)
=

This probability can be evaluated exactly as follows: Con-
ditioning on the common Erlang random variables
A1
Z’-“Zl v, ; =7, and Z L,V ; = Ts, the conditional prob-
ability reduces to the product of two P01sson proba-
+1
bilities Pr{z Uy <Ty < Zf v, J}Pr{zj 1V <Ts<

stjl vy ;). A similar logic applies to the cases of
(64,8 )_(1 3),(2,1), and (2, 3).

Given p(j;,, m;, t;;i =4,5), one can express Pr{X,(n)
< x} in the same way as that of Figure 2(a). For brevity,
we shall not repeat.

The General System. Essentially, the same analysis
extends to any two-level general network. Let [a; ;] be the
bill of material (BOM) matrix, i.e., assembling one unit at
node k requires a; ; units from node i. By the unit flow
assumption, @, , =0 or 1. Let ., ={ie€ .7 |a;, =1} be
the supplier set of node k, and #;, ={k € # | a; , =1} be
the customer set of node i.

For any node k € #, consider the nth unit of a demand
that arrives at time ¢. X, (n) and W, (n) are given by Equa-
tions (7) and (8), where

L (m) =max{X,(m) + L; ;} + L, for any m, (18)
ies

X;(m) = [L(M;(m)) = T,(J,(m))]", i€ 5. (19)

Clearly, the X;(m)s are dependent due to the common
demand processes shared by nodes i € .%,. We now derive
compact form for the joint probability of (J;, M, T;;i €
F). Let j, >0, i€ .9,

pUjismy, t; 1 € 9;)

=Pr{J,(m) = j, M;(m) =m;, T,(j;) 2 t;;i € 5}

:Pr{zDi,j:Si_m+mi’Di,j,> m;, T,(j;) > tz’lejk}

J;
=Pr{ZZD1,]’:si—m+mi’D§4 70 = m,

ledt; j=1

T.(j;) = t,,lejk}, (20)

where J! represents the number of demands from node
[ € #; in the last j; demands realized at node i. Clearly,

N Jl=j Vied.
leH;

0, represents the node from which the last jith demand at
node i comes, 0; € .

Enumerating all possible outcomes of (J!,! € %, 5;;
ief)=01eX, ;i) yields

pUim;, 151 € F)

= X

Y (i 1eRy, lie ;)

i
Pl > 320, =5 metm,

leF; j=1

L, ],

irJi

D, >mi;iejk}

xPr{T,(j) =1, J =jl.1eZ, 6,=1;ie5}). (21)
Similar to Figures 2(a) and 2(b), Pr{}",c; Z"'l D, ;=
s;—m~+m;, D, L2 > m;} can be computed by 1dent1fy1ng
and condmonlng on the common demand sizes shared by
nodes i € .%,. By a similar logic as that for Equation (17),

we must have

t Jl—jf,le%i,5i=l,»;i€fk}

1;
i

= Pr{z v, 2
j=I

Pr{T;(j;) 2

],—H

t,,ZV,]<Zv, j<ZV1],
leX,; andl;él,-;iejk}. (22)

To compute this probability, one can aggregate interarrival
times to obtain the minimum number of independent Erlang
random variables that are shared across different arguments.
Conditioning on common Erlang random variables, the
probability breaks into products of marginal probabilities
(either Poisson or Erlang), each associated with a demand
process.

If demand follows independent Poisson processes, then
J:(m) =s; and M;(m) = 1. Zhao and Simchi-Levi (2006)
characterizes the first two moments of T;(s;), but leaves
their joint probability distribution as an open question. Fol-
lowing the analysis here, the joint probability distribution
of T;(s;) is given as follows:

Pr{T.(s;) > 151 € .9}

= > Pe{T,(j) > 1.0} =i 1€ H ;=13 € T},
V(i ieH; i€ 5,)
(23)

where 3o J!'=s; and the right-hand side is given by
Equation (22). In other words, by conditioning on the num-
ber of arrivals from each demand type and the demand type
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of the last s;th arrival, one can characterize the joint distri-
bution of T;(s,), i € .%,.

In principle, the analysis of the two-level general net-
works extends to multilevel assembly networks with at
most one directed path between each pair of nodes. How-
ever, the exact analysis is more involved because in addition
to the dependence among nodes on the same level, we also
need to characterize the dependence among nodes across
different levels. In other words, we need to characterize the
joint probability of (J,, M,, T,) for nodes on all levels.

Finally, we characterize the impact of the common
demand size and interarrival time processes on system per-
formance. See the appendix for a proof.

PrOPOSITION 2.1. In a two-level general network, consider
an assembly node k € # and its suppliers i € .F, where
(i,k)esd. Forany m>1and T >0,

Pr{X;(m)+ L, <7, (i, k) et}

=Pr{[L,(M,(m)) — T,(J;(m))]* + L, , <7, (i, k) € 54}

> Pr{[L,(M](m)) = T,(J; (m))]" + L, <7, (i,k) et} (24)
2 H(i, k)est Pr{X;(m) + Li ;< T}, (25)

where M!(m) and J!(m) are independent copies of M,(m)
and J,(m).

Because L, (m) = max; pe{X;(m) +L; .} + Ly, Propo-
sition 2.1 has two implications: First, the total lead time
at node k is stochastically larger than or equal to that of
an analogous system with independent demand-size pro-
cesses (inequality (24)). Second, the total lead time at node
k with independent demand-size processes but a dependent
demand interarrival process are stochastically larger than
or equal to that of an analogous system with both inde-
pendent demand-size processes and independent interarrival
time processes (inequality (25)).

2.3. Networks of Special Structure

For networks with special structure, such as the pure assem-
bly or the pure distribution systems, the analysis can be
significantly simplified.

Pure Assembly Systems. Consider a pure assembly
system where nodes i =1, 2, ..., I supply node 0, and node
Q is the only customer of each node i. For any m > 1,
Ly(m) = max,_;, {X;(m) + L; o} + L, and X;(m) =

[L,(M,(m)) — T,(J,(m))]* for all i
The joint probability of (J,, M;, T;;i=1,2,...,1) can
be characterized as follows:
Pr{J(m) = j,, Mi(m) =m;, T,(j;) 2 t;i=1,2,...,1}
=Pr{J,(m)=j, M;(m)=m;;i=1,2,...,1}
Pe{T.(j) =2t;i=1,2,...,1}. (26)
The equation holds because (J;,, M;;i=1,2,...,1) now

depends only on the demand-size process.

We index the component nodes so that s; <5, <--- < 5.
If j, <j, <--- < jj, then the probability mass function of
(J,M;;i=1,2,...,1) can be broken down into products
of marginal probabilities as follows:

Pr{J,(m)=j, M, (m)=m;i=1,2,...,1}

Ji
:Pr{ZDO’jzsi—m+mi,Do,ji>mi;i=1,2,...,l}
=

J1
=Pr{ZDO,J»=s1 —m+my, D, ; >m1}
j=1

J
Pr{ > DO,j=s2+m2_s1_mlvDO,j2>m2}

Jj=ii+1

Ji
x---xPr{ Y Dy j=s+mp—s —my,

J=jr-1+1
Dy ;, =m; } (27)

The second equality holds because all components share the
identical demand-size process {D, ;,j > 1}; see Figure 4
for a graphic illustration. If j; = j,,, for some i, then we
replace the term Pr{}_7*} .| Dy ; = s;y +myy,
Dy ., 2 m;,,} in Equation (27) by 1 [

Because all components face the identical demand arrival
process, Equation (22) reduces to

Pr{T,(ji;) >
—PI'{ZVO =t ejk}

-8 —m;,

ti=1,2,...,1}

II,ZVOJ+ Z VoSl

J=h+1

Ji
= PI‘{Z vy, =
j=1

ZV0]+ Z V01+ + Z VOJ

J=j+1 J=ji+1

o} @

where v, ; are demand interarrival times at node 0. This
equation confirms Equation (8) of Zhao and Simchi-Levi
(20006).

An assembly system with compound Poisson demand
is analytically more challenging than an analogous system
with Poisson demand because of the dependence due to
common demand-size process (Equation 27).

Figure 4. J; and M, in a pure assembly system.

Si—n Sig1— 1

M(n) M (n) Cumulative
0 demand

Dy Do, DO, J, DO, T
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Pure Distribution Systems. Consider a distribution
system where node O supplies nodes & = 1,2,...,K.
For a node k, consider the nth unit of a demand that
arrives at time 7. X, (n) and W, (n) are given by Equa-
tions (7) and (8), where L,(m) = X,(m) + Ly,+ L, and
Xo(m) = [Lo(My(m)) — Ty (Jo(m))]".

Pure distribution systems are more tractable than pure
assembly systems because (J,(n), M,(n), T,(j)) are inde-
pendent across k =0, 1, ..., K. Thus, we can decompose
the distribution system into K + 1 single-stage systems as
follows: We first characterize X,(m) and L,(m) for all m,
then determine X, (n) and W, (n) for each k and n.

Forsberg (1995) provides a more efficient exact method
for two-level distribution systems. For comparison, let p; ,
be the probability that a randomly picked demand unit is
the nth unit of a demand at node k, or equivalently, the
long-run proportion of demand units that are the nth unit
of a demand. By Sigman (2001),

Pr.n =Pr{D, = n}/E(Dy). (29)

Then, the expected inventory holding time at node k is
given by

Zpk,nE(Wk(n))
= Zpk,n Z Pr{Ji(n) = ji, My (n) = m} ZPT{JO(’") =Jo}
x E((T, (i) = [Loy — Ty ()] — Loy — Loh). (30)

The method of Forsberg (1995) is computationally more
efficient than Equation (30) because for each unit of a
retailer k’s order, it identifies the corresponding order
of node 0 that satisfies this unit, as well as the correspond-
ing demand at the retailer that will be satisfied by this unit;
see Equation (3) of Forsberg (1995). Therefore, effectively
it ignores n in Equation (30) and directly sums over all
possible m. The method of Forsberg (1995) can also be
extended to handle stochastic sequential transit times.

For two-level distribution systems, we also point out that
Axsater (2000) provides a more general exact method to
handle both compound Poisson demand and batch-ordering
policies. The advantage of our approach is that it applies
to supply chains with a much more general network struc-
ture (than distribution systems) in a uniform way. In §3,
we shall derive approximations based on our approach to
facilitate fast computation.

2.4. Performance Measures

To determine the cost measures and service levels at
node k, we consider a randomly picked demand unit. Let
X, be the stockout delay of a randomly picked demand unit
at node &, and W, be the inventory holding time of the cor-
responding item at node k that satisfies a randomly picked
demand unit. Then,

Pr{X, <x} =3 p, Pr{X,(n) <x}, G

n=1

Pr{W, <w} =3 pp , Pr{W,(n) <w}, (32)

n=1

where p, , is the probability that a randomly picked de-
mand unit is the nth unit of a demand at node k; see Equa-
tion (29).

By Little’s Law, the expected backorders and on-hand
inventory at node k are given by

E(B)=ME(D)E(X,)= )\kE(Dk)ZPk,nE(Xk (n)), (33)
E(l)=ME(D)E(W,)= )‘kE(Dk)ZPk,nE(Wk(”))' (34)

The type 2 fill rate, 8, within a committed service time 7,
is given by

By = Zpk,n Pr{X,(n) < 7.}. (35)

If node k is an assembly node, then in addition to the
on-hand inventory of the finished good, /,, we also need to
consider the component inventories, I} V (i, k) € {. These
inventories are held at node k without being processed
because the corresponding units of other required compo-
nents are not yet replenished. By Little’s Law and Equa-
tion (18),

E(L) = ME(Dy) 3 pi nE(Wi (), (36)

Wi (n) = {1|I(},12));4}{X1(M"(n)) + L} = Xi(M(n)) — L .
(37)

3. Approximations and Optimization

Section 2 provides a basis for exact evaluation of small-size
problems (see §4.1 for an example). For larger problems,
exact evaluation is time demanding due to the dependent
stockout delays in assembly networks. In this section, we
develop numerically tractable approximations on the stock-
out delay, cost, and fill rate. We also formulate the opti-
mization problem.

Approximations on Stockout Delay and Cost. The
class of supply chains considered in this paper introduces
four challenges for exact evaluation: (1) the dependence
among parallel stages in assembly networks, (2) the depen-
dence between M, and J, at each node k, (3) the need
to compute X,(n) for each n, and finally, (4) the need to
compute probability distribution for X, (n).

To enable fast evaluation and optimization of system
performance, we first ignore the dependence in assem-
bly networks by focusing only on the marginal probabil-
ity distributions of the stockout delays. Hence, the supply
chain can be decomposed into multiple single-stage sys-
tems where each stage can be characterized separately. Sec-
ond, we ignore the dependence between M, and J, at each
node k.

To resolve the third challenge, we replace X,(n) =
[L,(M,(n)) — T,(J,(n))]* ¥n by an approximation

X, ~ [Z‘k -T]", (38)
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where X, is the stockout delay for a randomly picked
demand unit at node k, L, = max e {X; + Li ik} + Ly
and T, = T, (J,(N)), where N is the index of a randomly
picked demand unit at node k.

This approximation can be justified as follows. Given
St A, and D, as well as the distribution of L, (m) for
all m, we can compute the probability distribution of X, as
follows (Equation (7)):

Pr{X, < x}
= Zpk,n Z Pr{Ji(n) = j, My (n) = m}

n>0 m>1, j=0
-Pr{L,(m) — T,(j) < x}
~ 3 P > Pr{M, (n) =m} Y Pr{J(n) = j}

n>0 m=1 Jj=0
-Pr{L,(m) — T,(j) < x}
= > P 2 Prn o Pr{Ji(n) = J}Pr{L, (m) = T, (j) <x}

m>=1 n>0 j=0

as s, —n—o0. (39)

The “~” comes from our approximation of ignoring
the dependence between M, and J,. The asymptotic
result holds because by a property of renewal processes,
Pr{M,(n) = m} — p; ,, as s, —n — oo (Kulkarni 1995,
p. 435), where p, ,, is defined in Equation (29) and is inde-
pendent of n.

Equation (39) implies that X, ~ (L}, — T,)*, where L, is
the lead time for a randomly picked order unit at node k.
To justify Equation (39), we note that Ii}( is identical to
Zk if node k and all its immediate supplying nodes face
the identical demand-size process. This is true in serial and
pure assembly systems. However, in distribution systems,
Zk is only an approximation of Ij;(.

To resolve the fourth challenge, we utilize a two-moment
approximation proposed by Zipkin (1991) to compute
E(1,) and the first two moments of X,; see the appendix.
If node k is an assembly node, then by Equations (36)
and (37), the expected component inventory level at node
k can be approximated by

E(I))~ /\kE(Dk)E[ max {X,+L,,}—X;—L, k]’ (40)
{11, kyest ' '

where the mean and variance of the maximum of indepen-
dent random variables can be computed by Clark’s two-
moment approximation (Clark 1961).

Approximations on Fill Rates. We now develop ap-
proximations for service levels based on compound distri-
bution (Zipkin 2000, §C.2.3.8) and renewal theory. If node
k faces external demand, then it follows from Equations
(35) and (38) that the type 2 fill rate within 7, at node k
can be approximated by

Zpk,nPr{Zk = T,(J(n) < 7} = By (41)

n=1

Define A, , = L, — T,(J,(n)) — 7. Given L,, s,, 7, and
demand parameters A, and D,, we approximate A, , by a
normal random variable with the mean and variance deter-
mined by (see, e.g., Zipkin 2000, §C.2.3.8)

E(Ak,n) = E(Zk) —E(J(n)/ A — 7, (42)
V(A ) = V(L) +EJ(m)/ A+ V(J(n)/ A} (43)

We now determine E(J,(n)) and V(J,(n)). By Equa-
tion (3), if s, < n, then J,(n) =0, and therefore E(J,(n)) =
V(J,(n)) =0. If s, 2 n, then J(n) =1+ N.(s, — n),
where E(N.(s, — n)) and V(N,(s, — n)) are approxi-
mated by their asymptotic value (s, —n)/E(D,) and (s, —
n)V(D,)/E*(D,) (as s, — n — o), respectively (Kulkarni
1995, Theorem 8.7).

Optimization. For convenience, let X, be a vector rep-
resenting the stockout delays at the immediate suppliers of
node k, i.e., X, = (X, | (i, k) € o). Given the mean and
variance of X, (E(X,) and V(X,)), E(X,), and the demand
parameters A, and D,, we can determine s,, V(X,), and
the safety-stock carrying costs H, at node k, where

Hk(E()_(k)’V(Xk)sE(Xk))zth(Ik)+ Z th(Iii) (44)

(i,k)est

We can formulate a mathematical program for com-
pound Poisson demand in the same way as that for Poisson
demand; see Simchi-Levi and Zhao (2005) for details. The
program here differs from that of Poisson demand in two
ways: (1) s, V(X,), and H, are computed in a different
way by X, and E(X,) due to the compound demand pro-
cesses; (2) the service level is computed in a different way.
Simchi-Levi and Zhao (2005) develops an algorithm based
on dynamic programming (DP) to compute the optimal
or near-optimal base-stock levels for tree-structure supply
chains with Poisson demand and stochastic sequential tran-
sit times. The same algorithm applies here. We refer the
reader to Simchi-Levi and Zhao (2005) for an extended
discussion on the DP algorithm and its complexity.

4. Numerical Studies

The objective of this section is threefold: (1) developing
insights into the conditions under which the approximation
may or may not be sufficiently accurate, (2) illustrating the
efficiency of the approximation, and (3) demonstrating the
quality of the solution found by the DP algorithm.

4.1. Figure 2(a)

We present an exact evaluation of the system in Figure 2(a)
based on the closed-form expressions in Equations (11),
(12), and (14). Our objectives are to compare the exact
evaluation and the approximation in their numerical effi-
ciency and to test the accuracy of the approximation. The
accuracy of the approximation in larger systems is tested
in §§4.2-4.3.
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Figure 5. A comparison between the exact evaluation Figure 6. The six-stage example.
and the approximation on Pr{X, < x}.
—4
100.00
90.00
80.00 {=a —
—~ 70.00 L
S
= 6000 / 3 A '|| 5
= 7
= 5000
F / —— Exact, (5,53, 5) = (5,6,4)
40.00 / e APPIOX, (55550 = (5.6.4) | | (s,, 83, 54) = (10, 12, 8) takes around two to three seconds,
30.00 == —s— Exact, (sy 53, 5,) = (10, 12, 8) whereas the approximation takes less than 1/10° a second.
20.00 = Approx, (s, 53 89 = (10, 12, 8) [ Because the exact evaluation is time demanding for larger
10.00 . . . : . : . systems (in the number of nodes and arcs, as well as in
0 1 2 3 4 5 6 7 8

We assume zero lead times from external suppliers and
zero transportation lead times between every two nodes,
but nonzero processing times at all nodes. We consider
stochastic processing times at nodes 3 and 4. In partic-
ular, we assume that L, (L,) follows uniform distribu-
tion between zero and four (zero and three). Other types
of distribution are considered in §§4.2-4.3. For simplic-
ity, we let L, =5. Without loss of generality, let A, =0.4
and A, =0.6. The demand sizes at nodes 1 and 2 have
probability mass function (Pr{D, =1},...,Pr{D, =5}) =
(0.2,0.3,0.2,0.2,0.1) and (Pr{D, = 1},...,Pr{D, =4})
=1(0.4,0.3,0.2,0.1), respectively.

Figure 5 presents the exact evaluation and the approxi-
mation of Pr{X, < x} for two sets of base-stock levels. The
numerical result indicates that the approximation is rea-
sonably accurate overall, although sizable errors can occur.
For example, at (s,, s5,5,) = (5, 6,4), the approximation
is very accurate when x < 4. However, the error grows to
around 8.5% at x = 5. This can be explained as follows:
Because L, =5, the fill rate becomes heavily dependent on
the stockout delays from nodes 3 and 4 as x increases to 5.
Because the Clark’s (1961) two-moment approximation of
the maximum of random variables is based on normal dis-
tribution, it can generate sizable errors when the stockout
delays at nodes 3 and 4 are far from being normally dis-
tributed. We also observe that the approximation consider-
ably underestimates the fill rate for x >4 (at (s,, 53, 8,) =
(5,6,4)) and for all x (at (s,, s5,s,) = (10, 12, 8)). This
observation confirms Proposition 2.1—because the approx-
imation ignores the dependences in assembly systems, it
can overestimate )~(2.

Although sizable errors can occur, the approximation is
attractive because of its numerical efficiency. Let s, =
max{s,, s, $4}. The complexity of the approximation is
O(Spa) and O(U,), whereas the complexity of the exact
evaluation is O(s!! ) and O(U;). By storing some interme-
diary quantities such as incomplete convolutions of Erlang
random variables, we can reduce the computational com-
plexity of the latter to O(s% ) and O(U;). On a Pen-

max

tium 1.73 GHz laptop, the exact evaluation for cases with

stock levels), we use Monte Carlo simulation (a sampling
method based on the exact analysis in §2) to test the accu-
racy of the approximation in §§4.2—4.3.

4.2. A Six-Stage System

To further test the accuracy of the approximation and
to demonstrate the quality of the solution, we consider
a six-stage production-distribution system (see Figure 6).
We ignore all transportation lead times, but assume that
the processing cycle times follow Erlang distributions
with parameters E(L) and n (see, e.g., Zipkin 2000,
p. 457). According to convention, we assume that the
inventory holding cost increases as one moves down-
stream in the supply chain, i.e., (h, hy, hy, hy, hs, he) =
(4,4,1,1.5,2,3). Without loss of generality, we let
A, =0.7 and A, =0.3. The demand sizes at nodes 1 and 2
follow discrete normal distributions with probability mass
functions (Pr{D, = 1},Pr{D, = 2},...,Pr{D, =7}) =
(0.00621, 0.0606, 0.2417, 0.383,0.2417,0.0606,0.00621)
and (Pr{D, = 3},Pr{D, = 4},....,Pr{D, = 9}) =
(0.00621, 0.0606, 0.2417, 0.383,0.2417,0.0606, 0.00621),
respectively.

Compound Poisson Demand. We first consider com-
pound Poisson demand. To test the accuracy of the approx-
imation, we use the DP algorithm to find a solution and
then use Monte Carlo simulation to evaluate the solution.
We run 10* independent replications for each parameter set
and calculate the 95% confidence interval (CI) for the per-
formance measure. The CI for the fill rate is less than 1%,
and the CI for the cost is less than 3% of the simulated cost.

We conduct two numerical studies. In the first study,
we fix the parameters for the processing times {n', n?, n®,
n*,n’,n%} = {5,7,6,7,8,5} and {E(L,),E(L,), E(L),
E(L,),E(Ls),E(Lg)} = {6,6,1,2,5,6}, but vary 7, 7,
and B,, B,, where 7,, kK = 1,2 chooses value from
{0,2,4}, and B,, k = 1,2 chooses value from {0.85, 0.9,
0.95,0.99}. Thus, this study has a total of 144 instances.
In the second study, we fix 7, = 1 and 7, = 2.
For each B, = B, = 0.85,0.90,0.95,0.99, we study
100 instances with randomly generated processing time
parameters, where E(L,) ~ Uniform(1,2,...,10) and
n* ~ Uniform(1,2,...,10) for k=1,2,...,6.
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Table 1. The accuracy of the approximation in the first study.

Avg. abs. percentage Max. abs. percentage Avg. abs. Max. abs. Avg. abs. Max. abs.
error in cost error in cost error in 3 error in 3, error in 3, error in 3,
0.52% 1.7% 0.46% 1.66% 1.24% 3.9%

Table 1 demonstrates the average and maximum for the
absolute percentage error in cost and the absolute error in
B, and f3, in the first study. The absolute percentage error
in cost is the absolute difference between the simulated cost
and the cost generated by the DP algorithm divided by the
simulated cost.

Table 2 summarizes the results of the second study.
Tables 1 and 2 demonstrate that overall the approxima-
tion is reasonably accurate for the parameter sets examined
here. The largest error is a 3.9% error on 3, (Table 1);
the corresponding instance has 3, = 0.85, which indicates
that the errors may increase as 3 decreases. This observa-
tion is partially confirmed by Table 2, which shows that
the average and maximum errors of the cost and 3, are
increasing as 3, and 3, decrease. However, the trend is not
clear for 3,.

Given its accuracy and the numerical tractability, the
approximation is attractive for a wide range of parame-
ters of interest. However, we should point out that if 7, >
L,+ L, k=1, 2 (although not likely to happen in practice),
the approximation can be much less accurate, e.g., errors
around 10% are recorded in the fill rates. This observation
is confirmed in §4.1.

To demonstrate the quality of the DP solution, we
compare it to a solution found by a simulation-based
search algorithm. Because the simulated fill rates of the
DP solution may not exactly match the targets, we adjust
the input fill rates and run the DP algorithm repetitively
until the target fill rates fall into the 95% confidence
interval of the simulated fill rates. In the search algorithm,
we first identify an upper bound s; for the base-stock
level at each node. Then, for a base-stock level vector
(53,8455, 5%) € Qs a5.610, Lsi/10], [2s5:/10], ..., 50}
we use simulation to evaluate system cost and choose s,
and s, so that the simulated fill rates closely match the tar-
gets. Table 3 summarizes the results where 7, =1, 7, =2,
(E(Ly), E(Ly), E(Ly), E(Ly), E(Ls), E(Ls)) = (3,3,4,
4,3,1), and (n',n?, n’, n* n’, n® = (6,5,2,8,6,3). All
costs are given by simulation.

The percentage difference in costs in Table 3 is defined
as the difference between the cost of the DP solution and

the cost of the search-based solution divided by the cost
of the search-based solution. On a Pentium 1.73 GHz lap-
top, the search algorithm takes hours to solve for one
instance, whereas the DP algorithm takes about one to two
seconds. We first note that in all cases, the cost of the
DP solution is reasonably close to that of the search-based
solution. The DP solutions tend to perform better as the
target fill rates increase. This observation is consistent with
our results on the accuracy of the approximation (Tables 1
and 2). Because the approximation tends to be more accu-
rate for higher target fill rates, the DP algorithm (based on
the approximation) finds better solutions as the fill rates
increase.

Renewal Demand Processes. To further demonstrate
the potential of the approximation, we consider renewal
batch demand where the interarrival time, v, follows an
Erlang distribution with parameters A and 7n,. The demand
sizes are independent of the interarrival times. Because the
approximation requires E(Y,) < V(Y,) for all nodes k, we
assume that the demand size at node 1 (2) follows a Poisson
distribution with mean 4 (6). All other parameters remain
unchanged.

Under renewal batch demand, the demand process faced
by the distribution node (node 6) is nonrenewal. To resolve
this issue, we approximate the demand process at node 6
by a renewal batch process, following Whitt (1982). We
also modify the two-moment approximation to accommo-
date renewal batch demand. See the appendix for details.
To test the accuracy of the approximation, we conduct the
two similar numerical studies as in the case of compound
Poisson demand. In the first study, we vary n, =1, 2, 4, 16,
whereas in the second study, we set n, =4.

Tables 4 and 5 summarize the results. First, the average
and maximum errors in cost are sufficiently small in all
cases. Second, although the average errors in fill rates are
relatively small, e.g., <4.6% (Table 4), the maximum errors
increase considerably as n, increases (i.e., as the demand
processes deviate from compound Poisson); see Table 4.
Examination of the instances corresponding to the largest

Table 2. The accuracy of the approximation in the second study.
Avg. abs. percentage Max. abs. percentage Avg. abs. Max. abs. Avg. abs. Max. abs.
B =B= error in cost (%) error in cost (%) error in B, (%) error in B, (%) error in B, (%) error in B, (%)
0.85 0.67 3.51 0.93 2.48 2.02 3.71
0.90 0.64 2.54 0.93 3.09 1 2.53
0.95 0.46 1.79 1.10 3.28 0.64 2.42
0.99 0.32 1.36 0.79 3.04 0.45 1.10
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Table 3. Comparison between the solutions found by the DP and the search algorithm.

(515 835 S35 Sy S5 S6) (S15 S35 S35 Sy S5, S6) Cost Cost Percent diff.
By, B,) The search solution The DP solution (search) (DP) in costs (%)
(0.90, 0.90) (24,17,23,7,6,21) (27,20,6,0,15,21) 133.66 140.77 5.32
(0.90, 0.96) (23,22,27,0,0,28) (22,23,12,11,18,21) 153.68 161.43 5.04
(0.95,0.90) (30,17,13,15,19, 14) (33,20,6,0,15,21) 156.33 163.60 4.65
(0.96, 0.96) (29,22,27,15,12, 14) (28,22,6,0,15,31) 175.90 182.90 3.98
(0.98,0.95) (37,21,18,7,12,21) (36,21,6,0,9,34) 203.40 208.90 2.70
(0.95,0.99) (29,34,23,0,0,28) (28,33,6,0,9,34) 220.60 222.80 1
(0.98,0.99) (36,33,27,3,0,28) (36,33,6,0,9,34) 248.03 255.47 3

errors in fill rates (in Table 4) reveals that the instances
also have relatively small target fill rates (e.g., 85%). This
observation is confirmed by Table 5, which clearly demon-
strates that as the target fill rates increase from 85% to
99%, both the average and the maximum errors in the fill
rates and cost tend to decrease.

In summary, the approximation works well on cost for
renewal batch demand. However, it may result in sizable
errors on fill rates if the target fill rates are relatively low
and the distribution of the interarrival times is far from
exponential.

4.3. Larger-Size Examples

In this section, we demonstrate the accuracy and efficiency
of the approximation using examples motivated by real-
world problems.

The first example is inspired by the bulldozer supply
chain (see Graves and Willems 2003), which is a multistage
assembly network with 22 nodes and 21 arcs. We keep
all the data on the cost and the expected processing
time unchanged, but consider stochastic processing and
transportation lead times (see Appendix III of Simchi-
Levi and Zhao 2005 for details). We assume that the
external demand follows compound Poisson process with
A=1and (Pr{D, = 1},Pr{D, =2},....,Pr{D, =7}) =
(0.00621, 0.0606, 0.2417, 0.383, 0.2417, 0.0606, 0.00621).
The target customer service at the final assembly is set by 7
and 3, where 7 =0and 8 € {0.85, 0.9, 0.95, 0.99}.

To study the impact of the lead-time uncertainty on the
accuracy of the approximation, we assume that all process-
ing times and transportation lead times follow Erlang distri-
butions with identical coefficient of variation, i.e., identical
1/+/n, where n € {4, 9, 16}. This example takes around one
minute for the DP algorithm to generate a solution on a
Pentium 1.73 GHz laptop. We compare the approximation

Table 4.

here to a simpler one that only considers the mean stockout
delays, e.g., METRIC (Sherbrooke 1968). For simplicity,
we call the latter “one-moment” approximation and the for-
mer “two-moment” approximation.

For each parameter set, we first use the DP algorithm
(based on the two-moment approximation) to determine
the base-stock level at each node. Then, we use the one-
moment approximation as well as simulation to compute
the total cost and fill rate. In Table 6, the numbers without
(with) parentheses show the absolute percentage difference
in costs between the simulation and the two-moment (one-
moment) approximation. Similarly, in Table 7, the numbers
without (with) parentheses represent the absolute difference
in fill rates between the simulation and the two-moment
(one-moment) approximation.

Table 6 shows that the two-moment approximation is
sufficiently accurate for cost in all cases, and it tends to be
more accurate as the target fill rate increases. Table 7 illus-
trates that the two-moment approximation for the fill rate
is reasonably accurate when the transit time coefficients of
variation (c.v.s) are relatively small or when the target fill
rate is high. When the transit time c.v.s are relatively large,
e.g., 20.33, the two-moment approximation may perform
poorly on the fill rates.

Tables 6 and 7 also show that the two-moment approx-
imation is much more accurate for both the cost and the
fill rate than the one-moment approximation in almost
all cases, especially when the transit time c.v.s are high.
Indeed, the one-moment approximation always and sub-
stantially overestimates the fill rate except when the target
fill rate is close to one.

The second example is inspired by the battery sup-
ply chain (see Graves and Willems 2003), which is a
production-distribution network with 20 nodes and 19 arcs.
We simplify the original network by combining the nodes

The accuracy of the approximation in the first study, renewal demand.

Max. abs. Max. abs.

Avg. abs. percentage Max. abs. percentage
n, error in cost (%) error in cost (%)

Avg. abs. Avg. abs.
error in 3, (%) error in B, (%) error in B, (%) error in B, (%)

1 0.52 1.75 0.25 1.18 1 3.57
2 0.46 2.54 0.97 2.67 1.87 5.10
4 0.47 1.89 1.40 3.15 3.04 6.74
16 0.61 2.48 2 3.53 4.60 9.05
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Table 5.  The accuracy of the approximation in the second study, renewal demand.
Target Avg. abs. percentage Max. abs. percentage  Avg. abs. Max. abs. Avg. abs. Max. abs.
B, =B,= error in cost (%) error in cost (%)  error in B, (%) error in B, (%) error in B, (%) error in B, (%)
0.85 1.08 3.78 1.44 5.77 4.11 9.55
0.90 0.82 3.65 1.83 3.77 3.72 7.32
0.95 0.55 2.60 2.23 4.73 3.02 5.42
0.99 0.36 1.23 1.76 4.77 1.46 3.86

EMD, Spun Zinc, and Separater into a single node (denoted
by ESS) because their lead times are identical.

We keep all parameters the same as in Graves and
Willems (2003), except that we consider stochastic pro-
cessing times that follow Erlang distributions (with identi-
cal parameter n). We define demand in units of 5,000 to
allow for fast simulation. External demands are modeled by
compound Poisson processes where the demand sizes fol-
low negative binomial distributions. We set A =1 for each
external demand, and choose E(D) and V(D) to match the
mean and standard deviation of the demand in one period.
7 =0 for all nodes facing external demand.

For each combination of n € {4,9, 16} and B € {0.85,
0.9,0.95}, we use the DP algorithm to generate a solution
(which takes around 20 seconds on a Pentium 1.73 GHz lap-
top), then we use the one-moment approximation and sim-
ulation to compute the total cost and fill rates. The numer-
ical study shows that both the two-moment and the one-
moment approximations are sufficiently accurate on cost.
The maximum absolute percentage error (relative to the sim-
ulated cost) recorded is 4.58% (for the one-moment approx-
imation) and 3.8% (for the two-moment approximation). In
most cases, the percentage error is below 2%. Table 8 sum-
marizes the result on fill rates, where the numbers with-
out (with) parentheses represent the average and the max-
imum of the absolute differences in fill rates between the
simulation and the two-moment (one-moment) approxima-
tion over all nodes facing external demand. Table 8 shows
that the two-moment approximation always outperforms the
one-moment approximation. The improvement of the for-
mer over the latter is quite significant in almost all cases.

Comparing Tables 7 and 8, we find that the transit time
c.v. has less impact on the accuracy of the two-moment
approximation in the bulldozer supply chain than in the
battery supply chain. This is true because the former is
an extensive assembly network, whereas the latter is a
mixture of assembly and distribution networks. In assem-

compute the maximum of random variables. It can accu-
mulate sizable errors as the number of assembly opera-
tions increases and the lead-time distributions deviate from
normal.

5. Concluding Remarks

In this paper, we provide an exact framework to ana-
lyze a class of supply chains with at most one directed
path between every two stages. The external demands fol-
low independent compound Poisson processes, the transit
times are stochastic, sequential, and exogenous, and each
stage controls its inventory by an (installation) continuous-
review base-stock policy. Based on the exact analysis,
we present tractable approximations and demonstrate their
effectiveness by numerical studies. The exact framework
and approximations can be modified to handle supply
chains under periodic-review base-stock policies; see Zhao
(2006) for an extended discussion.

To conclude the paper, we identify a number of future
research directions.

e Real-world supply chains may have multiple directed
paths between two stages, i.e., acyclic supply chains. In
addition, the bill of material (BOM) structure can be
nonunit. An exact analysis of these supply chains requires
the joint probability distribution of the transit times. To
see this, consider a simple acyclic supply chain where a
product is assembled from one unit of two subassemblies,
each of which requires one unit of a common component.
Clearly, two units of the common component are assembled
into one unit of the product along different paths. To deter-
mine the stockout delay for the product, one has to char-
acterize the joint replenishment processes of consecutive
units for the common component, which requires informa-
tion on the joint probability distribution of the transit times.
Nonunit BOM structure poses a similar challenge. Con-
sider a single-stage system with two types of demand. Each
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bly systems, Clark’s (1961) approximation is utilized to type requires a different number of units, and a demand

Table 6. The accuracy of the approximations in cost in the bulldozer supply chain.
B=0.85 0.90 0.95 0.99
2 (1)-moment (%) 2 (1)-moment (%) 2 (1)-moment (%) 2 (1)-moment (%)
n=4 (c.v.=0.5) 2.08 (12.2) 1.5 (12.5) 0.70 (11.9) 0.16 (10.5)
9 (0.33) 1.40 (10.1) 0.9 (10.9) 0.40 (9.9) 0.16 (8.7)
16 (0.25) 2.55 (7.07) 2.3 (1.8) 1.68 (7.5) 0.10 (6.2)
(c.v.=0) 1.90 (1) 1.9 (2.5) 1.57 (3.17) 1.05 (2.9)
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Table 7. The accuracy of the approximations in fill rate in the bulldozer supply chain.

B=0.85 . 0.95 0.99

2 (1)-moment (%) 2 (1)-moment (%) 2 (1)-moment (%) 2 (1)-moment (%)
n=4 (c.v.=0.5) 6.50 (21.3) 7 (16.8) 6.50 (11.4) 4 (5
9 (0.33) 4.25 (18.6) 4.10 (13.9) 3.96 (8.8) 2 (3)
16 (0.25) 2.17 (16) 2.40 (11.8) 1.88 (6.5) 0.88 (1.86)
(c.v.=0) 0.40 (10.7) 0.26 (7.8) 0.01 (4.26) 0.29 (1.28)
is satisfied only when all the required units are available. Forl=2, j31 >0 and j32 > (. We consider three subcases:

Because different units may have to wait for each other,
additional inventory holding costs may occur. Exact eval-
uation of these holding costs requires information on the
joint distribution of the transit times.

e In this paper, we ignore the batch-size constraints. We
note that Axsater (2000) provides an exact method to eval-
uate two-level distribution systems with compound Poisson
demand and batch-ordering policies. Song (2000) and Zhao
and Simchi-Levi (2006) present exact analyzes for various
ATO systems with batch-ordering policies. However, it is
not clear how to exactly evaluate multilevel supply chains
of more general structures (than distribution) with batch-
ordering policies.

() IF B = sy Qp=Pr(SL, Dy = 55+ my — s,
m ) Pr{y0L D, =5, —m+ g, D, max{m3, my}}.

(2) If ]32 > Jas Qp —Pr{Z Dl it Z J=jst1 D, ;=s+
My — 8y — My, Dy p > ms}Pf{ZFlDz,j =84 —m+ my,
D, ; =2 my}. N

(3) If j3 < js D—Pr{Z D1j+2’-3 D2j=53_
m+my, D, 2 > m3,z 1Dy + _j+1D21 —m+
my, D, ; = m4} One can compute this probablhty by con-
ditioning on Z 1Dy

We then compute the probability on demand interarrival
times in Equation (11). For simplicity, let Q; =Pr{T;(j;) >

ty, 0y = ji, JE = ji, 8 =1, T,(j,) = t,}. We discuss two
cases: [ =1 and [ =2. For [ =1, we consider three sub-
cases:

(1) If j, < j?, then by Equation (12),

Appendix

We first compute the probability on demand sizes in
Equatlon (11) Let j; > 0 and j, > 0. For simplicity, let
=Pr{} 7 Dlj—i—zj 1Dy j=s3—m~+my, Dy i >my; %0 n 7 A+

ol D2,j =5, —m+my, D, ; > m,}. We discuss two Q7 =fmax{t3)t4}_/t4 Pr{ ‘_ZIVZ”' STz T < ‘_ZIVZ»J'}
cases: [=1and [=2. For =1, j! >0 and j? > 0. We JEhE Il
consider three subcases: »

(V) If j2 = j, QD=Pr{2§3=1D1,j=s3+m3—s4—m4, XP{
Dl,j3‘ > m3}Pr{Z§4=1D2,j =84 —m+my,D,; > my},
where each of the right-hand-side probabilities can be com-
puted in a way similar to Equatlon (6).

(2) If j5 > j,, QD—PY{Z 1Dy, ,+Z] i Dy =53+

/%
Zv2j—74}dT4P{Zv1] }d73,

Jj=1 Jj=1

where P{-} denotes density functions for Erlang random
variables, and the probability inside the integral is given by
Poisson mass function.
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Table 8. The accuracy of the approximations in fill rates in the battery supply chain.
B=0.85, 2 (1)-moment (%) 0.90, 2 (1)-moment (%) 0.95, 2 (1)-moment (%)
n=4 Max: 2.80 (11.5) 2 .1 1.50 (5.6)
Avg: 1.80 (7.6) 1.07 (5.7) 0.73 (3.17)
9 Max: 3.50 (9.67) 2.50 (7.3) 1.40 (4.3)
Avg: 1.90 (5.7) 1.40 (4) 0.85 (1.9)
16 Max: 3.50 (9) 3.16 (6) 1.70 (3.4)
Avg: 2.26 (4.4) 1.76 (2.74) 1 (L2)
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(3) If j, > ji, then

T_/ / Pr{V2]+1>73 Ty ZVZJ 7'4}

Jj= j3+1

i J
P{sz,j = 1'4} dT4P{ZV1,j = 7'3} dr;.

j=1 j=1

One can compute this probability by further conditioning
on v, 2L

For [ =2, we consider three subcases:

(1) If j, < j3, then by Equation (12),

j3+1
QT=/ / Pr{2v11<73+7'4<21/1]}
ty (=7t j=1
2

P{ S ovy =

J=iatl

Ja
7'3} dﬁP{szJ = 7'4} dr,.
j=1

(2) If j, = j2, then

S A+l 3
QTzf Pr{ZV”<T<ZVU} {sz,j=7}d7
max{rs, 14} j=1

(3) If j, > j2, then

J3+1
QTz/t Pr{Zvlj<T< ZV”}

3

3
T} x P{sz,j = T} dr.

j=1

Ja
Pr{ doom =ty

J=ii+1

PROOF OF PROPOSITION 2.1. To prove inequality (24), we
condition on the transit times and demand interarrival
times. We first show that X;(m) is a nondecreasing func-
tion of the demand sizes. By Equations (3) and (4), J;(m)
and M;(m) are independent of demand sizes if m > s,. If
m < s;, then J;(m) = j, where j is the smallest integer such
that 3_, D; , > s, —m, and M;(m)=Y_)_, D, , +m —s,.
If we increase D, ) for 1 < j < j, then we have two cases:
(1) J;(m) does not change but M,(m) increases. Hence,
by the transit time assumption, Zi(Mi(m)) and X;(m) are
nondecreasing in D, ;. (2) J;(m) decreases, which means
that the order is delayed. By the transit time assumption,
X;(m) is again nondecreasing in D, ;. Because all other
demand sizes have no impact on X;(m), X;(m) is a nonde-
creasing function of the demand sizes.

Because the demand sizes are independent, they are
associated random variables (Tong 1980, Theorem 5.2.2).
Because X,(m), (i, k) € s{ are nondecreasing functions of
the demand sizes, they are also associated random variables
(Tong 1980, Theorem 5.2.3). Unconditioning on the transit
times and interarrival times, we obtain inequality (24) by
Theorem 5.2.4 of Tong (1980).

To prove inequality (25), we condition on the transit
times and demand sizes. Because T;(J;(m)) is nondecreas-
ing in demand interarrival times, X;(m) is nonincreasing in
demand interarrival times. By the same arguments as those
for inequality (24), we obtain inequality (25). O

We utilize a two-moment approximation for X, (see
Zipkin 1991): Given E(L,) and V(L,), s, and the demand
process A, and D,, we compute E(X,) and V(X)) as
follows:

(1) Compute the mean and variance of the lead-time
demand, Y,, where

E(Yk) ZE(Zk)AkE(Dk)7 (45)
V(Y,) = NE(DE(Ly) + (AE(D) V(L) (46)

Then, fit the lead-time demand distribution by a nega-
tive binomial distribution, which matches the first two
moments.

(2) Compute the expected backorders E(B,) and the
variance of the backorders V(B,) by

B, =Y, —s)". (47)

(3) Finally, compute E(X,), V(X;), and E(I,) as fol-
lows:

E(Xk) = E(Bk)/Ak/E(Dk)’ (48)
V(X,) = (V(B,) — ME(D)E(X,))/ (A E(DY))?, (49)
E(ly) =5, — E(Y,) + E(By). (50)

We refer the reader to Zipkin (2000) for more discussions.

For renewal batch demand, let v, be an arbitrary inter-
arrival time for node k. It follows from Zipkin (2000,
§C.2.3.8) and Kulkarni (1995, Theorem 8.7) that Equations
(46) and (49) become

V()= )\kV(Dk)E(Zk) + [AiV(Vk)E(Zk)
+ N V(LYIED)?,  (51)
V(X)) = (V(BY) — M V(D) E(X))/(ME(Dy))
M V(WIE(X,). (52)

Consider Example 1 in §4.2 where the interarrival time
at node 1 (2) follows an Erlang distribution with A, and
V(v,) (A, and V(v,)). By the asymptotic method of Whitt
(1982), we can approximate the demand process at node 6
by a renewal process with

Ag XA+ Ay, (53)
A3 A

V(v) ~ V(Vl) t35 V(Vz) (54)

The demand-size distribution at node 6 is approximated by

a mixture of the demand-size distributions at node 1 (with

probability A,/A¢) and node 2 (with probability A,/Aq).

Finally, for renewal process, Equation (43) becomes

V(A = V(L) + EG )V () + V(L ()/A;. (55
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