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Prior to the start of an adaptive clinical trial, demand for an investigational drug can be
highly uncertain. Both recommended dosages and patient recruitment can fluctuate in re-
sponse to early trial results. While initial demand forecasts can be very wrong, the factors
influencing future demand can be learned during the trial. To take advantage of this learn-
ing, intra-trial batches can be produced, but at the expense of scale economies. Using
various learning curves, we study this balance between learning and economies of scale in a
finite horizon inventory model with fixed production costs and two production options: The
pre-trial batch and the intra-trial batch. We characterize the optimal policy for both produc-
tion batches in regards to optimally scheduling and sizing production. Through analytical
and numerical studies, we develop insights on the impact of fixed costs, learning rates, and
penalty costs on the value of the intra-trial batch, the timing of the intra-trial batch, and
the size of the pre-trial batch.

1. Introduction

Before an investigational drug can obtain FDA approval, the drug must be proven both safe

and effective in humans. Unfortunately, only one in five drugs that enter this human testing

hurdle of the FDA approval process, also known as clinical trials, actually obtains approval

(DiMasi 2003). This failure to obtain approval does not always mean that the drug is truly

unsafe or ineffective; it may simply be the test was not setup for success. Possibly, a different

dosage or a different length of treatment may have led to a better outcome for the clinical

trial. In an effort to achieve more successes, the pharmaceutical industry is moving towards

adaptive clinical trials which allow for flexibility in how a trial is conducted (Lesko 2007).

For example, an adaptive approach allows for different dosages during the same trial and

to weed out the dosages that prove toxic or non-therapeutic as trial data is collected and
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analyzed. This is in stark contrast to the traditional, more rigid approach to clinical trials

where a dosage, a patient population, a length of treatment, and specific measures of success

are chosen all prior to commencement of the trial.

Of course, the purely rigid approach is a supply manager’s dream because demand is more

certain. However, in an adaptive trial, more uncertainty about demand is introduced. For

example, if during an adaptive trial the recommended dosage of an investigational treatment

goes from 10mg to 20mg, the demand has just been effectively doubled. As a result, we see

that the increased probability of a successful trial for FDA approval comes at the expense of

the supply chain. Many of the key parameters used for forecasting supply are now subject

to change during the trial.

To ensure supply for the start of a trial, clinical supply managers are forced to “forecast

based on a limited number of variables before the cost of the supply chain overshadows the

risk of excluded variables impacting supplies.” (Hall 2008). Given more time, all of the

variables impacting clinical supply requirements become less fluid and a better forecast of

demand can be made. Given the need to start clinical production before demand is known

leads to two possible strategies. If we assume a sufficient shelf life of the investigational drug,

one supply strategy is to produce enough material in the initial production run to accom-

modate any potential scenario for clinical trial demand. Alternatively, a supply manager

can break production into two production runs. The first production run is made to ensure

enough supply is available to start the trial. The second production run ensures enough

supply to end the trial and is made with greater precision in forecasted demand. For exam-

ple, a clinical trial, with globally distributed testing centers, will start with enough supply

to satisfy a launch of the trial in the United States. Once launched in the United States,

international testing centers are opened and most demand for these sites will be satisfied

using supply from a second production run.

Supply from a second production run is committed to with greater certainty as to dosage

and study enrollment parameters. A trial that begins with a range of possible dosages, also

called treatment arms, also begins with high demand uncertainty. However, as the trial

continues patient allocation to dosages becomes concentrated on the most promising of the

initial dosages (see e.g. Krams, Lees, Hacke, Grieve, Orgogozo, and Ford 2003). Thus, the

longer the trial continues, the longer the supply manager learns about demand and the more

certain he can be about the remaining supply requirements.

Unfortunately, reducing the costs of supply-demand mismatches can only be realized
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by increasing the number of production runs. The additional runs, while costly, can be

planned for using a more accurate forecast of trial demand. By incurring multiple setups,

the high fixed costs of physical drug production and the associated quality control activities

are amortized over less inventory and economies of scale are sacrificed. The essence of this

paper is to understand this sacrifice of economies of scale and to optimally balance the

benefits of learning against higher costs for physical supply.

In this paper, we construct a model to plan drug supply for adaptive clinical trials.

While minimizing inventory costs, the model explicitly incorporates the learning that takes

place during a clinical trial. At the beginning of a clinical trial, both dosage and patient

recruitment requirements are very uncertain. As a trial is underway and continues, the ideal

dosage and the desired patient enrollment are zeroed in and a more accurate forecast can be

made. Various rates of demand learning are considered through the use of learning curves

that are a function of time. In addition to demand learning, the model incorporates setup

costs (i.e., fixed costs in production) for both pre-trial and intra-trial production. Thus, the

model enables us to weigh the benefit of demand uncertainty reduction against the cost of

incurring a second setup cost for production. The objective of this paper is to study the

impact of fixed costs and demand learning rates on the value and the optimal timing of

demand learning.

We organize the rest of the paper as follows. We review the related literature in §2. The

model and analysis are presented in §3. A numerical study is presented in §4. Finally, we

summarize the paper and discuss future research directions in §5.

2. Literature Review

While our model is motivated by challenges of the pharmaceutical industry, it is both ap-

plicable and similar to the problems faced by production planners of many short lifecycle

products with uncertain demand. In one of the most cited works on production planning for

short lifecycle products, Fisher and Raman (1996) pioneered an approach to reduce stock-out

and markdown costs for a set of seasonal fashion products based on the idea that sufficiently

short manufacturing lead times allow for a portion of production to occur after some ini-

tial demand is observed. This initial demand could then be used to better forecast actual

demand for a set of new products. They described this logic as follows:

The dramatic improvement in forecast accuracy after observing only 20% of ini-
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tial demand suggests a strategy for reducing the cost of too much or too little

inventory: commit to a modest amount of initial inventory for each product,

observe initial demand, and then produce an additional amount of each product

based on improved forecasts.

Consistent with the above logic, the authors present a two-stage model that incorporates

second stage forecast uncertainty reduction, which we will also refer to as demand learning,

through the correlation of demand between observed first stage demand and total expected

demand. Through this correlation, the authors captured how the second-stage production

enables a more accurate match of supply and demand. As a result of decreased supply-

demand mismatch costs, it is shown that use of the authors’ methodology at Sport Obermeyer

can potentially quadruple profits.

As our work in this paper is highly motivated by the vein of research in Fisher and

Raman’s seminal work, we highlight three key distinctions between our model and theirs.

First, we allow the second production run to occur at different time points and thus, the

scheduling of the second production run is also a decision variable. Second, we include setup

costs directly whereas their work includes minimum lot size requirements as a proxy for

these costs. Lastly, we study the impact of learning rate on the system performance by

incoporate learning curves in the demand learning process. This enable us to connect the

amount of learning with the amount of time we have available to learn. Combined, these

three distinctions allow us to weigh the benefits of demand learning against the fixed costs

of introducing a second production run.

If we abstract from adaptive clinical trials, the general idea we seek to model is that

forecasts and planning decisions can be improved based on observation of a full or partial

season’s demand. Within this abstraction, we can find papers that address a similar problem

to ours. For example, Parlar and Weng (1997) research a two-period production decision

where a second production run is possible. However, this second production run occurs

after the realization of demand and thus, full learning has occurred. As an example of

partial learning, Eppen and Iyer (1997) study a large catalog retailer’s decisions of how

much of a women’s fashion product to order and then how much to divert to outlet stores

upon observation of a portion of demand. They continue a long-line of studies that utilize

bayesian updating for forecast revision. A much earlier paper recognizing the importance of

adaptively revising forecasts is given by Murray and Silver (1966). They employ a Bayesian
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methodology for updating an unknown sales probability of an item based on a known amount

of potential customers.

In our paper, we employ a learning curve approach to study the effect that different

rates of demand learning have on the optimal first period batch size and second period

production quantity. As detailed in the survey by Yelle (1979), learning curve applications

have extended far beyond the more traditional applications of modeling the decrease in

per unit manufacturing costs or the increase in labor productivity due to organizational

experience. To our knowledge, this paper is among the first to apply a learning curve model

that predicts forecast uncertainty as decreasing with the log of time allotted to observe

demand. While the application is new, previous studies suggest the applicability of its use.

For example, Bitran, Haas, and Matsuo (1986)’s study of production planning at a consumer

electronics company notes the reduction in the coefficient of variation (CV) between forecasts

that are made in January (CV = 1), April (CV = 0.5), and October (CV = 0.2) and actual

sales for the Christmas season. As opposed to using a learning curve to model this reduction

in forecast uncertainty, the author’s simply assume forecast error in each period is normally

distributed with a known and decreasing standard deviation over time.

Even though our use of learning curves to model forecast uncertainty reduction is unique,

the use of learning curves to understand the benefits of learning in production planning is not.

Terwiesch and Bohn (2001) study whether learning to ramp up the yield of a supply process

and thus, delaying time to market and foregoing early demand, is preferable to producing

first to satisfy early market demand and then investing in learning to achieve greater yield.

Using a dynamic programming approach, the authors prescribe that manager’s experiment

early during production ramp up to increase learning early on. Despite this early learning

taking time from production when prices are at their highest, the authors argue that this is

the right time to devote production capacity towards engineering trials and efforts to improve

yield and production rates.

In another interesting study of learning and production, Kornish and Keeney (2008) study

the tradeoff of learning against capacity. Their model, motivated by the annual decision of

which strains of flu to vaccinate against, address “a trade-off between quantity (producing

more) and quality (produce a more effective vaccine because you know more).” By delaying

the commitment to which flu strains will be targeted by the produced vaccine, a more effective

vaccine can be made, but there is less time for production. The optimal policy is discussed

and its implications for choosing to commit to production or wait for more information are
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detailed in their study.

The inclusion of a second production run, or mid-season replenishment option if in a

retail setting, for short lifecycle products is a logical extension to the classical newsboy

model. Lau and Lau (1997) study a mid-season replenishment possibility, but do not include

set-up costs and only uniformly distributed demand is addressed in their model. While

they consider making the time of the replenishment a decision variable prior to the selling

season, their use of modeling each period’s demand as a uniform distribution restricts this

possibility. Milner and Rosenblatt (2002) study of the buyer’s perspective when making a

supply contract for a short life-cycle product is more amenable to making the timing of the

second production run a decision variable. While the focus of their two-period model is

on the contract form, they have a secondary contribution which is to consider the duration

of the first and second period as a decision variable. Fisher, Rajaram, and Raman (2001)

explicitly consider time as a decision variable when planning mid-season replenishment and

use a heuristic solution to help a catalog retailer. More recently, Li, Chand, Dada, and

Mehta (2009) have relaxed many of the assumptions in Fisher et al. (2001) and yield more

structural results on the form of the optimal policy. Our paper differs from all of these

mid-season replenishment models through the inclusion of setup costs and learning curves

in our model.

The inclusion of setup costs in a production planning model for short lifecycle products

with forecast updating has also been addressed in the literature. For example, the previously

mentioned study by Bitran, Haas, and Matsuo (1986) includes the effect of setup costs for

a family of products in their model. In a more recent study, Weng (2004) includes setup

costs in his model to study the effects of those costs on coordination of ordering quantities

between manufacturer and retailer. They find that as setup costs increase, the importance

of a coordinating contract also increases. Our inclusion of both setup costs and learning

allows us to find a balance between sacrificing economies of scale with additional production

and benefiting from production made with less demand uncertainty.

3. The Two-Period Model

In this section, we first introduce the notation and the model in Subsection 3.1. We then

characterize the optimal ordering policy in Subsection 3.2. Next we introduce the demand

learning model in Subsection 3.3 and finally we study the impact of fixed cost in Subsec-

6



tion 3.4.

3.1 Notation and Model

Let the planning horizon be [0, T ] and assume zero lead time. We will use the following

notation throughout the paper:

• t: Length of the learning period (i.e. the first period) where 0 ≤ t < T . In the case of

one production batch, t = 0.

• D: Total demand in period [0, T ].

• D1: Demand in the 1st period, [0, t].

• D2: Demand in the 2nd period, [t, T ].

• D2|D1=ξ: Demand in the 2nd period [t, T ] given D1 = ξ where ξ is the realization.

• x1: Production quantity for the first period and made available at time 0.

• x2: Production quantity for the second period and made available at time t.

• κ: Setup cost of production.

• πb: Backorder penalty per unit short after the first period that is ultimately satisfied.

• πs: Shortage penalty per unit of unmet demand at the end of the time horizon.

• r: Overage penalty (destruction/recycle cost) per unit leftover item at the end of the

time horizon.

• y2: Order up to level for the second period.

To avoid trivial cases and ensure a realistic model, we make the following assumption.

Assumption 1 πs > πb > c ≥ 0, πs − πb > c and demand is non-negative.

Assuming zero initial inventory, we let f1(t) be the optimal expected inventory cost for

the two-period problem with t being the duration of the learning period and let δ(xt) be the

indicator function of xt > 0. Then, the optimal cost is expressed as

f1(t) = min
x1≥0

{
δ(x1)κ+ cx1 + πbED1

[
(D1 − x1)+

]
+ ED1

[
f2 (x1 −D1, t) |D1

]}
, (3.1)
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where f2(I, t)|D1 represents the optimal expected inventory costs for the second period con-

ditioning on D1, given a starting inventory of I = x1−D1 and the length of the first period,

t.

f2(I, t)|D1=ξ = minx2≥0

{
δ(x2)κ+ cx2 − πb (−I − x2)+ +

πsED2|D1=ξ

[
(D2|D1=ξ − I − x2)

+]+ rED2|D1=ξ

[
(I + x2 −D2|D1=ξ)

+] }.
(3.2)

Thus, the optimal first period cost is the sum of the first period setup costs, first period

variable production costs, first period backorder penalty costs, and the expected second

period costs. The second period costs consist of a setup cost for a second period production,

variable production costs for the second production run, a rebate on backorder penalties

charged in the first period that turn out to be lost sales (i.e. second period production

does not satisfy the unmet demand of the first period), a lost sales penalty, and destruction

costs. Note that in adding an additional replenishment option, we also must introduce in

intra-period shortage penalty. We consider this a backorder penalty which is much less costly

than the shortage penalty charged at the end of the horizon. The second period shortage

penalty, since there is no additional recourse for additional replenishment, is analogous to a

lost sales penalty.

In our analysis of the timing of the first period, three points are worthy of mention. First,

our model explicitly excludes lead time in the consideration. Second, our model requires that

the timing of the second production run be scheduled in advance of the season. Third, our

model excludes the substantial risk of the trial being halted prior to the end of the time

horizon. This risk, which we call failure risk, is due to the possibility of a trial showing that

a drug is unsafe or ineffective prior to the conclusion of the trial.

For certain types of clinical drug supply the zero lead time assumption may be untenable.

However, for other types this assumption is valid. For example, when NeoRx Corporation

outsourced clinical trial supply to International Isotopes Inc., purchase orders were only

placed one week in advance and rolling forecasts were provided for 3 months of future demand

(NeoRX 10-Q Filed on May 9, 2000.). These durations are much shorter than the overall

duration of the trial, which may take as long as 2-3 years. Please note that these purchase

orders are for batches produced after the first batch. The lead time on the first batch

may still be lengthy as manufacturing facilities are configured for initial production. Once

production facilities and processes are in place, lead time on additional batches can be much

shorter than that of the first batch.
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The timing of the intra-trial batch being determined prior to commencement of the

actual trial is consistent with outsourcing contracts for clinical supply where the availability

of manufacturing capacity is reserved in advance. It is also worth noting that Li, Chand,

Dada, and Mehta (2009) have found little value to dynamically determining the timing of

the second production run. We do not consider the effects of cancellation fees on the supply

manager’s decisions, although we believe this might be an interesting area for future research.

Lastly, the risk of failure risk, although important, is excluded from our analysis and

reflects the typical supply philosophy of planning for success during a clinical trial. If failure

were to occur during time (0, t), it is as if the second production option would go unutilized.

By applying a discount factor to the cost of producing in the second period, this aspect of

clinical trials could be captured. To keep our analysis to the balancing of economies of scale

and uncertainty reduction, we propose that inclusion of failure risk may be an interesting

area of future research.

3.2 Optimal Ordering Policy

It is more convenient to use y2 = I + x2 and thus Eq. (3.2) becomes,

f2(I, t)|D1=ξ = −cI + min
y2≥I

{
δ(y2 − I)κ+ cy2 − πb (−y2)+ + Lξ(y2, t)

}
, (3.3)

where Lξ(y, t) = πsED2|D1=ξ

[
(D2|D1=ξ − y)+

]
+ rED2|D1=ξ

[
(y −D2|D1=ξ)

+].
To further analyze Eq. (3.3), we note that we can either produce (i.e. x2 > 0) or not

produce,

f2(I, t)|D1=ξ = −cI + min
{

miny2>I

{
κ+ cy2 − πb (−y2)+ + Lξ(y2, t)

}
,

cI − πb (−I)+ + Lξ(I, t)
}
.

(3.4)

Observation 1 If y2 > I, then the optimal order-up-to level for the second period y∗2 ≥ 0.

Proof. If I ≥ 0, y∗2 ≥ 0 by definition. If I < 0, consider a y2 ≤ 0. By Assumption 1 and

Eq. (3.3),

κ+ cy2 − πb (−y2)+ + Lξ(y2, t) = κ+ cy2 − πb(−y2) + πsED2|D1=ξ
[D2|D1=ξ − y2]

= κ+ cy2 + ED2|D1=ξ
[πsD2|D1=ξ + (πs − πb)(−y2)] .

By Assumption 1, the cost function is decreasing in y2 for y2 ≤ 0. Thus y∗2 ≥ 0. �
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By Observation 1, Eq. (3.4) can be reduced to,

f2(I, t)|D1=ξ = −cI + min
{

min
y2>I

{
κ+ cy2 + Lξ(y2, t)

}
, cI − πb (−I)+ + Lξ(I, t)

}
. (3.5)

The following observation shows that the second period cost function is not convex and

thus we cannot directly apply the classical result of (s, S) policy (e.g., see Zipkin (2000,

Section 9.5)) to this problem.

Observation 2 The second period cost function cI −πb (−I)+ +Lξ(I, t) is not convex in I,

but it is unimodular in I and approaches infinity as I → ±∞.

Proof. First, we note that −πb (−I)+ is concave in I. For I < 0, it follows by Assumption

1 that the second period cost function reduces to

cI − πb(−I) + πsED2|D1=ξ
[D2|D1=ξ − I] = πsED2|D1=ξ

[D2|D1=ξ]− (πs − πb − c)I,

which is clearly convex in I. For I ≥ 0, the second period cost function reduces to cI+Lξ(I, t),

which is also convex in I. However, the left derivative of the cost function at I = 0 equals

−(πs − πb − c) < 0 (by Assumption 1), which is greater than the right derivative of the cost

function at I = 0, −(πs − c). Thus, the cost function is not convex in I for I ∈ (−∞,∞).

To show the cost function is unimodular, we note that it is convex and decreasing in I

for I ∈ (−∞, 0]. Because it is also convex in I for I ∈ [0,∞), it must be unimodular.

Finally, as I → −∞, the slope of the cost function is −(πs−πb− c); as I →∞, the slope

approaches c+ r. The proof is now completed. �

Now we are ready to identify the optimal ordering policy for the second period given

D1 = ξ. Let S2(ξ) be the smallest global minimizer of cy +Lξ(y, t), and s2(ξ) be the largest

I (but smaller than S2(ξ)) such that cI − πb(−I)+ + Lξ(I, t) = κ + cS2(ξ) + Lξ(S2(ξ), t).

Indeed, S2(ξ) = Φ−1D2|D1=ξ

(
πs − c
πs + c

)
≥ 0, where ΦD2|D1=ξ

(·) is the probability density function

of D2|D1=ξ. s2(ξ) must exist by the unimodularity and asymptotic properties shown in

Observation 2.

Theorem 1 The optimal ordering policy for the second period is a (s, S) type of policy

depending on D1 = ξ, where s = s2(ξ) and S = S2(ξ). In other words, if the beginning

inventory position I < s2(ξ), we order up to S2(ξ); otherwise, we do not order.

Proof. The proof follows directly from the definition of s2(ξ), S2(ξ) and Observation 2. �
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Note that s2(ξ) and S2(ξ) are dependent on D1 = ξ but independent of second period

starting inventory I.

By Theorem 1, we can write f2(I, t)|D1=ξ as follows,

f2(I, t)|D1=ξ = −cI +

{
κ+ cS2(ξ) + Lξ(S2(ξ), t), I ≤ s2(ξ)
cI − πb(−I)+ + Lξ(I, t), I > s2(ξ).

(3.6)

We now show f2(I, t)|D1=ξ is κ-convex for any ξ. By Zipkin (2000, Section 9.5), we have

the following definition.

Definition 1 We call a function f(x) κ-convex if for any x, and nonnegative u and v, f(x)

satisfies

f(x) + v
f(x)− f(x− u)

u
≤ f(x+ v) + κ.

Lemma 1 f2(I, t)|D1=ξ is κ-convex in I for any ξ.

Proof. For simplicity, we drop ξ from our notation without causing confusion. We also

define f̃(I, t) = f2(I, t) + cI. Clearly if f̃(I, t) is κ-convex, f2(I, t) is also κ-convex.

If s2 ≥ 0, then

f̃2(I, t) =

{
κ+ cS2 + L(S2, t), I ≤ s2
cI + L(I, t), I > s2.

By Zipkin (2000, Section 9.5), f̃2(I, t) and thus f2(I, t) is κ-convex.

If s2 < 0, we first consider any I ≤ s2. By the definition of the (s2, S2) policy, we must

have f̃2(I, t) + v
f̃2(I, t)− f̃2(I − u, t)

u = f̃2(I, t) = f̃2(S2, t) + κ ≤ f̃2(x, t) + κ for all x. Next

we consider I ≥ S2. The κ-convexity inequality must hold because f̃2(I, t) is convex and

increasing. Finally, we consider s2 < I ≤ S2. Note that f̃2(I, t) is decreasing for I < S2 by

Observation 2, thus f̃2(I, t) + v
f̃2(I, t)− f̃2(I − u, t)

u ≤ f̃2(I, t) ≤ f̃2(S2) +κ ≤ f̃2(I + v) +κ.

The proof is now completed. �

Theorem 2 The optimal ordering policy for the first period is a (s, S) type of policy.

Proof. By Lemma 1, f2(I, t)|D1=ξ is κ-convex. By Lemma 9.5.1 of Zipkin (2000), ED1 [f2(x1−
D1, t)|D1 ] is also κ-convex, and so is cx1 +πbED1

[
(D1 − x1)+

]
+ED1

[
f2 (x1 −D1, t) |D1

]
. By

Theorem 9.5.2 of Zipkin (2000), the proof is completed. �

Let (s1, S1) be the optimal (s, S) policy for the first period. Thus, if s1 > 0, then we

produce up to S1 in the first period. Otherwise, we do not produce.
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3.3 Demand Learning Model

The initial belief of the total demand during the planning horizon is that D is normally

distributed with mean µ and standard deviation σ. We assume dependent demand in periods

1-2: D1 and D2 (D = D1+D2). Following Fisher and Raman (1996) and Fisher, et al. (2001),

we assume (D1, D2) follows a bivariate normal distribution with correlation coefficient ρ(t),

where ρ(t) depends on the amount of learning that can take place by time t. In Section 4, we

borrow methodology from the learning curves literature to model this function. The marginal

distribution D1 is also normal with mean µ1 and standard deviation σ1. We assume that for

t ∈ [0, T ],

E(D1) = µ1 = α(t)µ, σ2(D1) = σ2
1 = β(t)σ2,

where α(t) and β(t) are fractions increasing from 0 to 1 as t increases from 0 to T . For

example, α(t) = t/T and β(t) = t/T . Then the marginal distribution of D2 is normal with

E(D2) = µ2 = (1− α(t))µ, σ(D2) = σ2 = −ρ(t)σ1 +
√
ρ2(t)σ2

1 + σ2 − σ2
1.

Conditioning on D1 = ξ, D2 follows a normal distribution with the following parameters

(Fisher and Raman 1996):

µ2(ξ) = µ2 + ρ(t)σ2
ξ − µ1

σ1
, σ2(ξ) = σ2

√
1− ρ2(t).

It is easy to see that given t, as ρ increases, σ2 decreases and thus σ2(ξ) decreases.

We model demand learning through correlation between first and second period demand.

Through correlation, a fraction of the variance in the second period’s demand is explained by

the realization of the first period’s demand. Mathematically, this fraction is simply ρ(t)2 and

the fraction of variance that remains unexplained in the second period is 1−ρ(t)2. Consistent

with this mathematical interpretation, we will model demand learning as a reduction in

unexplained variance. Intuitively, the fraction of unexplained variance in second period

demand should be close to one early in the time horizon and closer to zero at the end

of the horizon. To study different rates of learning, we will assume that the amount of

learning, more specifically the reduction in uncertainty surrounding second period demand,

1−ρ(t)2, follows a power law form that was introduced as a learning curve model by Wright

(1936). Modifying Wright’s learning curve to represent a supply manager’s ability to remove

uncertainty in the variance of second period demand, we have 1− ρ(t)2 =
(
T−t
T

)γ
and thus

ρ(t) =

√
1−

(
T − t
T

)γ
(3.7)
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where γ ≥ 0 is the shape parameter of the learning curve. When γ = 1 the amount of

learning is linear in time, when γ < 1, learning is slow and the uncertainty parameter,

1 − ρ(t)2, will be a concave function of time. At γ = 0, there is no learning and demand is

independent across periods. Lastly, when γ > 1, learning occurs more rapidly and 1− ρ(t)2

is a convex function of time.

3.4 Impact of The Fixed Cost

Intuitively, as the fixed cost, κ, increases, the two-period model reduces to the newsvendor

model. This intuition is confirmed by the following proposition.

Proposition 1 S1 tends to the newsvendor quantity as κ→∞.

Proof. For simplicity, we drop the dependence on D1 for (s2, S2) without causing confusion.

Suppose we produce in the first period, the total cost function can be expressed as follows,

κ + min
x1>0

{
cx1 + πbED1 [(D1 − x1)+] +

+ED1 [−c(x1 −D1) + κ+ cS2 + LD1(S2, t)|D1 ≥ x1 − s2]

+ED1 [−πb(D1 − x1)+ + LD1(x1 −D1, t)|D1 < x1 − s2]
}
.

As κ→∞, s2 → −∞ (by Observation 2) for each realization of D1. Thus, the cost function

tends to

κ+ min
x1>0

{
cx1 + ED1 [LD1(x1 −D1, t)]

}
,

where ED1 [LD1(x1 − D1, t)] = ED1 [ED2 [πs(D1 + D2 − x1)
+ + r(x1 − D1 − D2)

+|D1]] =

ED1+D2 [πs(D1 +D2− x1)+ + r(x1−D1−D2)
+]. The last equality comes from the definition

of conditional expectation. Note that ED1+D2 [πs(D1 + D2 − x1)
+ + r(x1 − D1 − D2)

+]

represents the cost function of the newsvendor model without the second period, the proof

is now completed. �

In general, as the fixed cost κ increases, S1 will be more likely used to cover both D1 and

D2, and thus S1 typically increases.

4. Numerical Analysis

The objective of this section is to quantify the effects of setup costs, learning rates, and

penalty costs on the value of the second production option, the optimal timing of learning,
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and the optimal first batch size. The penalty costs include the overage penalty cost, r + c,

and underage penalty costs, πs − c and πb − c.
As a starting point for the analysis, a baseline problem is created where we assume

mean demand over the time horizon is 1, 000 units and the standard deviation of demand

is 300 units. We assume demand for the time horizon is normally distributed and since this

distribution is divisible, we can mathematically divide demand between two periods. Thus,

the fraction, t
T

, represents the percentage of total demand expected to occur in the first

period. The parameters of our baseline model, in the absence of demand learning (i.e. γ = 0

in Eq. 3.7), are shown in Table 1.

Parameter Description Baseline Value

t Length of first (learning) period. 5

T Length of planning horizon. 10

γ Rate of demand learning. 0

D(0, t) First Period Demand N(µ, σ) N(1000 ∗ 5
10
,
√

3002 ∗ 5
10

)

D(t, T ) Second Period Demand N(µ, σ) N(1000 ∗ 10−5
10
,
√

3002 ∗ (1− 5
10

)

κ Setup cost of a production run 0

πb Backorder penalty 20

πs End of horizon shortage penalty 50

c Variable production cost 2

r Destruction Cost 1

Table 1: Baseline Parameter Values

In Figure 1, we compare the expected costs of our baseline model with the expected costs

of a newsvendor model (i.e. a single production run at t = 0). For our baseline model, we

have arbitrarily scheduled an additional replenishment option mid-way through the planning

horizon. As can be seen from the graph, the additional replenishment opportunity leads to

a greater than 10% reduction in costs. It is also interesting to note that the expected costs

of the baseline model are less sensitive than the newsvendor model to first period order

quantity. At this point, one might conclude that a mid-season replenishment can reduce

expected costs and lead to a decision that is less sensitive to model parameters. However,

the comparison we made ignores several key components that constitute the motivation for

this study. First, setup costs are zero and when producing clinical trial drug supply, large
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setup costs are a reality that must be accommodated. And second, our comparison fails

to account for demand learning and the freeing of the variable, t, so that this additional

production can be optimally scheduled.

We now introduce setup costs into our analysis without considering demand learning.

From the proof of Proposition 1, we know that as setup costs increase the two-period model

reduces to the newsvendor model. We can see this effect by comparing Figure 2 which

includes a setup cost (κ = $1, 600) to Figure 1 which assumes there are zero fixed costs

when producing. With setup costs introduced, we can see that the value of an additional

replenishment midway through the planning horizon yields minimal savings of 2% of the

newsvendor solution’s inventory costs.

Counteracting this decrease in value from our baseline model, we can free the scheduling

of the second replenishment and show the effects of this scheduling on expected costs. To

analyze this, we graph expected costs as a function of the first period length (t) as seen in

Figure 3. For every choice of first period length, t, the optimal first period order quantity

has been numerically determined. We see the optimal first period length is close to the entire

planning horizon (t ≈ 8.5) and not the arbitrarily chosen mid-horizon production (t = 5).

As might be expected, the mid-horizon production case with setup costs leads to reduced

savings over the newsvendor solution as compared to an available second production run

without setup costs. Interestingly, we see that when t = T , the solution still outperforms

the newsvendor solution. In this case, the value of the additional replenishment (when

optimally planned) is purely derived from replacing the expected end of horizon shortage

penalty with a backorder penalty in cases of high demand. In contrast, when t = 8.5, some

of the value provided by this model as compared to the neswvendor solutions is from the

ability to effectively match supply and demand for a portion of the horizon.

While setup costs have reduced some of the benefit of the intra-season replenishment

option, demand learning creates greater incentives to plan an additional replenishment and

counter-balance the costs imposed by an additional setup. Inituitively, faster rate of demand

learning (higher γ in Eq. 3.7) encourages earlier scheduling of the potential second production

run. To see this in our example, we now analyze the baseline model with setup costs for

various rates of demand learning. We pick various values of our learning parameter, γ, to

represent different rates of uncertainty reduction and plot the expected costs of our baseline

model with setup costs (κ = $1, 600) and learning in Figure 4. We see from this graph that

faster learning leads to both an earlier scheduling for the second production run and larger
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Figure 1: Expected Costs when κ = $0
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Figure 2: Expected Costs when κ = $1, 600

cost reductions versus the single newsvendor production. More importantly, the cost benefit

of learning has effectively nullified the substantial setup cost. We see that when the rate of

learning is simply linear in time (γ = 1), we can achieve savings of greater than 10% over

the single production solution. This linear learning rate would yield a correlation coefficient

of 0.82 at the optimal duration of the first period (t ≈ 6.75) which is consistent with the

correlations used in (Fisher, Rajaram, and Raman 2001).

While the scheduling decision is important, it is not made in isolation. The optimal

supply strategy will simultaneously consider the timing of the second production and the

sizing of the first batch. In Figure 5, we analyze the interplay of production scheduling

and optimal first batch size for various setup costs and linear learning (γ = 1). In the

absence of setup costs (i.e. κ = 0) and when replenishment is planned after observing a

small fraction (roughly 10%) of demand, we observe that the optimal first period batch is

less than half the newsvendor batch size. However, with even modest setup costs of $100,

the optimal batch sizing this early in the season is much closer to the newsvendor quantity.

This is a key observation that the suggestion of a ”modest amount of initial inventory”

(Fisher and Raman (1996)) is less appropriate when setup costs are factored into the decision

making. The benefits of ample inventory, including avoiding additional setup costs and first

period backorder costs, outweigh the benefits of uncertainty reduction afforded by a second

production.

In the absence of setup costs and in the presence of demand learning, a second production

run is a likely event. For our baseline model with linear learning and zero setup costs, the

second production run is optimally scheduled at around t ≈ 5.5 and it is expected that 71%
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Figure 3: Expected Costs Versus Timing of Second Replenishment with Setup Costs

of the time the production run will be utilized. The other 29%, demand is so low in the first

55% of the planning horizon that a second production is not needed. Even though overage

risk is present, this risk is offset by having enough inventory to avoid intra-period backorder

costs.

As soon as we introduce setup costs, we also introduce a notion of economies of scale in

production. A manager’s expectation of producing more than once reflects his willingness to

sacrifice scale economies to achieve savings. The tradeoff between sacrificing scale economies

to better match supply and demand is summarized in Table 2. We see from this table that

setup costs significantly decrease the probability of a second production. For example, in

the case of linear learning (γ = 1), the introduction of setup costs of $1,600 reduces the

likelihood of producing a second time from 71% to 21%. Further increases in setup costs

drastically reduce the likelihood of producing a second time. From a planning perspective,

mid-season replenishment in the presence of high setup costs is really an emergency supply

option for cases of extremely high demand.

Even though the likelihood of producing a second time can be small, the value of this

option remains significant in the presence of learning. This can be seen in Table 3 which

shows the expected savings over the newsvendor model when optimally scheduling potential

replenishment. From this table, we can see that with linear learning and setup costs of $1,600,

a 10.7% reduction in costs can be expected by just having a resupply option available. From
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Figure 4: Expected Costs Versus Timing of Second Replenishment with Setup Costs and
Demand Learning

Table 2, we know that this resupply option will only be exercised about 21% of the time.

Digging deeper into Table 3, we see that even with higher levels of setup costs (e.g. $3,200),

savings of greater than 5% are achievable. While in a pharmaceutical setting, these cost

reductions are significant, in a retail setting Fisher et al. (2001) show how much smaller cost

savings can translate into big gains in profitability.

Learning Rate (γ)
κ 0 0.5 1 2 4

- 66.7% 66.3% 70.6% 74.1% 77.4%
100 50.2% 59.4% 64.5% 69.1% 73.6%
200 41.1% 52.1% 57.5% 63.0% 68.1%
400 30.5% 43.3% 48.8% 54.4% 60.6%
800 19.8% 31.9% 36.8% 40.0% 47.5%

1,600 10.4% 18.7% 21.4% 24.4% 27.2%
3,200 4.8% 9.2% 10.2% 11.0% 11.9%
6,400 1.6% 3.4% 3.6% 3.8% 4.0%

12,800 0.1% 0.7% 0.7% 0.8% 0.8%

Table 2: Probability of Mid-Season Replenishment for Various Setup Costs and Learning
Rates

Another consideration in this mid-season replenishment environment is how penalty costs
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Figure 5: Optimal First Batch Size Versus Timing of Second Replenishment with Setup
Costs and Demand Learning

(i.e. overage, lost sales, and intra-period backorder penalties) impact our decisions of replen-

ishment timing and first period batch size. And even more importantly, how do changes in

these parameters affect the magnitude of savings over a simpler newsvendor solution? The

clinical trial supply environment is driven by a fear of delaying a trial due to insufficient

supply and intuitively, one would think increasing underage penalties (πs or πb) would lead

to greater expected savings of a second production. In studying this numerically, we surpris-

ingly find the advantage of having an intra-season replenishment option is not dramatically

improved by dramatically increased underage penalties. For example, our numerical study

has found that doubling the two underage penalties of our baseline model with setup costs

(κ = $1, 600, πb = 40, πs = 100) only increases expected savings over the newsvendor solution

an additional 2.8% from 10.7% to 13.5%. Further increases to these underage penalties, as

shown in Table 4, yield similarly modest results with the reason being that avoiding these

underage penalties is relatively inexpensive; overage costs are only $3 which is small in com-

parison to the end of horizon shortage penalty of $50 of our our baseline model. Basically,

it is cheap to hedge against having too little inventory by simply producing more.

In studying the effect of changes to the overage penalty, we find that increasing the

overage penalty leads to greater jumps in savings magnitude than increasing underage costs.

For example, if we look at the case where πb = 40, πs = 100, and κ = $1, 600, we find that
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Learning Rate (γ)
κ 0 0.5 1 2 4

- 16.5% 28.8% 31.7% 34.8% 38.2%
100 14.7% 26.5% 29.1% 32.1% 35.3%
200 13.1% 24.4% 26.9% 29.7% 32.7%
400 10.9% 20.9% 23.1% 25.5% 28.0%
800 7.8% 15.8% 17.4% 19.1% 20.8%

1,600 4.6% 9.8% 10.7% 11.6% 12.4%
3,200 1.9% 4.5% 4.9% 5.2% 5.5%
6,400 0.4% 1.3% 1.4% 1.5% 1.6%

12,800 0.0% 0.2% 0.2% 0.2% 0.2%

Table 3: Table of Savings for Various Setup Costs and Learning Rates

πb / πs % Savings

20 / 50 10.7
40 / 100 13.5
80 / 200 15.8

160 / 400 17.7
320 / 800 19.35

Table 4: Expected Savings Over a Newsvendor Solution for Increasing Underage Costs
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savings of greater than 50% over the newsvendor solution can be expected when overage

costs are 64% of the end of horizon shortage costs. A selection of overage cost penalty values

and expected savings are shown in Table 5. Less dramatic than the changes in savings, both

optimal batch sizes and optimal timing values fall within small ranges as the overage penalty

is adjusted. Optimal batch sizes fall between 71% and 79% of their respective newsvendor

optimal order sizes and optimal timing for the second production run is between 62% - and

68% of the planning horizon.

While increases to both overage and underage penalties will always increase savings over

a newsvendor solution, the increase in percentage savings can be both small and large.

Percentage savings increases per dollar of increased penalty cost are fastest when overage

and underage costs are highly unbalanced and increases are made to the lower of the two

costs. Conversely, when increases are made to the higher of the two costs, only marginal

benefits will be realized. In a pharmaceutical setting where underage costs far exceed overage

costs, the observation on the effects of increasing overage penalties suggests that increases

in variable production costs, which effectively reduce the lost sales penalty and increase the

overage penalty, will greatly increase the attractiveness of intra-season replenishment.

r % Savings

1 13.5
2 16.9
4 22.4
8 29.9
16 38.1
32 45.4
64 50.7
128 53.9

Table 5: Expected Savings Over a Newsvendor Solution for Increasing Destruction Costs

In summary, our numerical study pursued an understanding of the value of an intra-season

replenishment over the newsvendor solution. The value that is created depends on two key

decisions in planning for this intra-season option. First, how is our first batch size decision

affected by the presence of a resupply option and second, when should the potential resupply

be planned for. These two decisions, and the potential to achieve meaningful savings are

affected by a multitude of parameters and for simplicity, we now summarize our findings in

Table 6.
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relative to newsvendor solution

Parameter
% Savings 1st Batch Size (%) 1st Batch Size 1st Period Length(
f1(0)−f1(topt)

f1(0)

) (
x1

xnewsv

)
(x1) (t)

Learning (γ)

Setup Costs (κ)

Backorder Penalty (πb)

Shortage Penalty (πs)

Destruction Costs (r)

Table 6: Effect of Parameter Increases on Performance and Decision Variables

5. Conclusions

The inclusion of setup costs and learning curves in our study leads us to many conclusions

that add to the body of literature dealing with an additional replenishment option for prod-

ucts with short lifecylces. When setup costs are present, the first batch remains large as

compared to a newsvendor batch. As opposed to a smaller batch, the inventory helps to

potentially avoid incurring setup costs a second time and avoiding intra-season backorder

penalties.

Selection of learning period length is driven by both changes in setup costs and learning.

We observe that increasing setup costs will initially increase the optimal learning period

length and then decrease it. At lower levels of setup costs, when these costs increase, it is

advantageous to have a longer learning period to permit greater observation of demand and

a more certain second period forecast. Eventually, further increases to setup costs decrease

the learning period to avoid backorder costs in the cases of extremely high demand that

would actually warrant incurring a second setup.

Our study is the first to look at the tradeoff between sacrificing economies of scale by

planning for multiple batches and benefiting from demand learning so that a better match of

supply and demand can be made. We have found that the ideal conditions for consideration

of an additional production run are when setup costs are low, learning is fast, and both

overage and underage penalties are significant. In certain examples, we find savings to

exceed 50%. Admittedly, these high-value examples are less applicable to clinical trials where

underage costs far exceed overage costs. However, these high value examples are realistic

when extending this model to a fashion environment or other short lifecycle products where

underage and overage costs are not so lop-sided.
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