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Abstract

We consider a model of single-item periodic-review inventory system with stochastic demand, linear ordering cost, where

in each time period, the system must order either none or at least as much as a minimum order quantity (MOQ). Optimal

inventory policies for such a system are typically too complicated to implement in practice. In fact, the ðs;SÞ type of policies
are often utilized in the real world. We study the performance of a simple heuristic policy that is easily implementable

because it is specified by only two parameters ðs; tÞ. We develop an algorithm to compute the optimal values for these

parameters in the infinite time horizon under the average cost criterion. Through an extensive numerical study, we

demonstrate that the best ðs; tÞ heuristic policy has performance close to that of the optimal policies when the coefficient of

variation of the demand distribution is not very small. Furthermore, the best ðs; tÞ policy always outperforms the best

feasible ðs;SÞ policies and on average the percentage differences are significant. Finally, we study the impact of MOQ on

system performance.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Economies of scale are important concerns in
many industries. This is especially true for compa-
nies that manufacture and/or distribute pharmaceu-
tical, apparel, consumer packaged goods or
chemical products. Most companies use one of the
following three ways to achieve the economies of
scale in production and distribution: charging fixed
front matter r 2006 Elsevier B.V. All rights reserved
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ordering cost, or requiring batch orders, e.g., full
truck load, or setting minimum order quantity
(MOQ) for their customers.

MOQ is widely used in practice. A celebrated
example of MOQ is the fashion sport ski-wear
manufacturer and distributor: Sport Obermeyer
(Hammond and Raman, 1996). While the produc-
tion base of Sport Obermeyer in Hong Kong sets a
MOQ of 600 garments per order, its production
base in China requires 1200 garments. The MOQ
constraints can be applied to a particular item or a
group of items, such as all colors of a parti-
cular style. We refer the reader to Hammond and
Raman (1996) for more detailed descriptions of the
.
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managerial situation. MOQ is not only required in
fashion industries where customers, e.g., retailers,
only place orders once or twice in a selling season, it
also applies to many repeatedly ordered items
carried by large retail chains such as Home-Depot
and Wal-Mart stores. When a supplier sets a MOQ,
the ordering cost from that supplier is typically a
linear function of the ordering quantity because the
economies of scale have been accounted for by the
MOQ. Large MOQs present substantial challenges
to the efficient management of supply chains,
because they require customers (e.g., retailers) to
order either none or many units, therefore they
reduce customer flexibility in responding to de-
mand, and eventually increase their inventory costs.

To provide tools and principles for companies
that can guide their managerial actions in control-
ling inventory when they face MOQ from their
suppliers, we consider a model of a single-item
inventory system in which the demand is random
and the ordering cost is linear. At each time period,
the system can either order none or order at least as
much as the MOQ. Our objective is two-fold: (1)
designing effective inventory control policies that
are easily implementable and computationally
tractable; (2) developing insights with respect to
the impact of the MOQ.

It was shown by Zhao and Katehakis (2006) that
the optimal policies for such systems are typically
too complicated to implement in practice. In fact,
the ðs;SÞ type of policies (the min–max policies) are
commonly used in the real world for the inventory
systems with MOQ. Herein, we propose and analyze
a new class of inventory control policies with a
simple structure, namely the ðs; tÞ policies, with
sptosþM, where M represents the MOQ. The
ðs; tÞ policy works as follows: when the initial
inventory position is lower than or equal to s, order
upto sþM; when the initial inventory exceeds s but
is no more than t, order exactly M; otherwise, do
not order. We provide bounds for the optimal t and
develop an algorithm to compute the optimal values
for s and t. Throughout the paper, optimality refers
to the infinite time horizon average cost criterion.

To demonstrate the effectiveness of the ðs; tÞ
policy, we conduct an extensive numerical study to
compare the performance of the best ðs; tÞ policy to
that of the optimal policy as well as that of the best
feasible ðs;SÞ policy with S � sXM. In practice,
many companies have a build-in periodic review
structure and utilize the min–max policies to control
inventories, i.e., if the inventory drops below the
minimum level s, an order is placed that will refill
the stock up to the maximum level S. Under the
constraint of MOQ, the difference between S and s

is no less than the MOQ as demanded by the
supplier. Indeed, the difference between S and s is
often set exactly to the MOQ due to the lack of fixed
ordering cost. Our numerical study demonstrates
that the ðs; tÞ policy has close to optimal perfor-
mance under reasonable conditions, and it signifi-
cantly outperforms the best feasible ðs;SÞ in all
instances. We also study the trade-off between
inventory costs and the MOQ, and the interplay
of the MOQ and various parameters, e.g., demand
variability, penalty and holding costs.
2. Literature review

Extensive research has been conducted on sto-
chastic production-inventory systems in which the
economies of scale in production and transportation
are main concerns. Most of the literature focuses on
models with either fixed ordering costs or fixed
batch sizes, see Veinott (1966), Heyman and Sobel
(1984), Chen (1998) and Zipkin (2000) for excellent
reviews, while little work has been done on systems
with MOQ.

Chan and Muckstadt (1999) analyze a produc-
tion-inventory system in which the production
quantity is constrained by a minimum and a
maximum level in each period, i.e., the production
smoothing problem. They characterized the optimal
policy in finite and infinite time horizons under the
discounted cost criterion. The problem of MOQ is
different from the production smoothing problem
because the order quantity in the former is either
zero or at least the MOQ, and therefore the action
sets are disjoint and unbounded, while in the later,
the action sets are connected and compact. It was
shown in Zhao and Katehakis (2006) that these
disjoint action sets significantly complicate the
structure of the optimal policy.

Fisher and Raman (1996) is perhaps the first
paper considering MOQ in a stochastic inventory
system. Its focus is on fashion items with short
product life-cycles and therefore the inventory
system under study has only two review periods.
There are multiple items subject to the MOQ
requirements as well as a production capacity
constraint. The paper formulates the problem into
a stochastic program, and quantifies the impact of
MOQ on the inventory costs for fashion items.
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Zhao and Katehakis (2006) consider a single-item
stochastic inventory system with MOQ in finite and
infinite time horizons under the discounted cost
criterion. The model is suitable for repeatedly
ordered items. The authors characterized the
optimal ordering policy everywhere in the state
space outside of an interval for each time period,
and develops simple upper bound and asymptotic
lower bound for these intervals. In a simple example
with two review periods, Zhao and Katehakis
(2006) demonstrate the complexity of the optimal
policy by showing that the cost functions may have
multiple local minimums in these intervals.

The main contribution of this paper is the
performance analysis and optimization of the easily
implementable ðs; tÞ policies. We demonstrate by
numerical studies that they outperform the ðs;SÞ
policies and have performance close to the optimal
policies under a reasonable condition of demand
distribution. The rest of this paper is organized as
follows: in Section 3, we formally define the model.
In Section 4, we present and analyze the ðs; tÞ policy
and develop an algorithm to determine its optimal
parameters. An extensive computational study is
conducted in Section 5 to demonstrate the effec-
tiveness of the ðs; tÞ heuristic policy and to develop
managerial insights. Lastly, conclusions are sum-
marized in Section 6.

3. The model

We consider a periodic review inventory system
managing a single item. The demand D for this item
are i.i.d. random variables with finite mean EðDÞ. At
each time period, the inventory system can either
order none or order any amount as long as it equals
to or exceeds the MOQ, M. There is no fixed
ordering cost, but there is an inventory holding cost
h per unit per period, and a penalty cost p per unit
per period. We set the purchasing cost equal to zero
because linear ordering costs can be ignored under
the average cost criterion, see, e.g., Veinott and
Wagner (1965) and Zheng and Federgruen (1991).
For the ease of exposition, we assume that the
retailer faces zero replenishment lead-time. The
model can be easily extended to systems with
positive replenishment lead-times following the
standard procedure as in Heyman and Sobel
(1984, p. 75).

The sequence of events is as follows. At the
beginning of a time period, the retailer reviews
the inventory and places an order to its supplier. At
the end of the time period, demand is realized and
the retailer fills the demand as much as it can from
stock. If the retailer cannot fulfill all the demand,
the excessive amount is backlogged. Let x be the
initial inventory position at the beginning of a time
period, and y be the inventory position after order is
placed, the single-period cost function can be
written as

LðyÞ ¼ ED½hðy�DÞþ þ pðD� yÞþ�,

where y either equals x or y is not smaller than
xþM. x and y are integers. Clearly, LðyÞ is a
convex function and LðyÞ ! þ1 as jyj ! 1. Let
y� be the smallest global minimum of LðyÞ.
4. The heuristic policy

As Zhao and Katehakis (2006) point out, the
optimal policies for multi-period stochastic inven-
tory systems with MOQs do not have a simple
structure. Indeed, the optimal policies are too
complicated to implement in practice. Therefore, it
is of practical importance to identify and analyze
easily implementable heuristic policies which also
have close to optimal performance under reasonable
conditions. Based on the analysis of the single-
period problem as well as multiple period Markov
decision process associated with the stochastic
inventory systems with MOQs (see Zhao and
Katehakis, 2006), we propose the ðs; tÞ policy: given
integers s; t where sptosþM, and an initial
inventory position x, the policy is to order
yðxÞ � x, where

yðxÞ � x ¼

sþM � x if xps;

M if soxpt;

0 otherwise:

8><
>:

(1)

That is, when x is smaller than or equal to s, order
upto sþM; when x is greater than s but smaller
than or equal to t, order exactly the MOQ; and
when x is above t, order nothing. Note that when
t ¼ s, the ðs; tÞ policy reduces to a ðs;SÞ policy with
S � s ¼M.

To identify the optimal s and t that minimize the
long-run average cost within this class of policies,
we focus on the inventory position y at the
beginning of a time period after the order decision
is made. y can choose one of these values,
tþ 1; tþ 2; . . . ; tþM, and it evolves according to
a discrete time Markov chain (DTMC) with the
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transition matrix P, where
i;j ¼

pði�jÞþ for j ¼ tþ 1; tþ 2; . . . ; sþM � 1

8i ¼ tþ 1; . . . ; tþM;Pþ1
k¼i�s pk þ pði�jÞþ for j ¼ sþM

8i ¼ tþ 1; . . . ; tþM ;

pi�jþM þ pði�jÞþ for j ¼ sþM þ 1; sþM þ 2; . . . ; tþM

8i ¼ tþ 1; . . . ; tþM ;

8>>>>>>>>><
>>>>>>>>>:

(2)
where pi ¼ PfD ¼ ig, pði�jÞþ equals to pi�j if iXj,
and zero otherwise. Let qi be the long-run fraction
of time such that y ¼ tþ i, and q ¼ fq1; q2; . . . ; qMg.
If ftþ 1; tþ 2; . . . ; tþMg forms a close commu-
nicating class, then,

q ¼ qP,

XM
i¼1

qi ¼ 1. (3)

The steady-state distribution of the inventory
position is not uniform in general. Using renewal
reward process, Veinott and Wagner (1965) derive
the exact expression of the long-run average cost of
the ðs;SÞ policies, and Zheng and Federgruen (1991)
develop an efficient method to calculate the optimal
ðs;SÞ policy. The key idea is to identify the expected
total cost in the cycle between two successive orders
where a cycle always starts with inventory position
S. However, in the ðs; tÞ policies, the inventory
position just after ordering can take any value from
sþM, sþM þ 1; . . . ; to tþM, instead of a un-
ique value S in the case of ðs;SÞ policies. Thus, there
are multiple types of cycles where each starts with a
different inventory position. To calculate the long-
run average cost using renewal reward theory, one
needs to identify the steady-state probability of a
cycle starting with every possible inventory position.
However, it is not clear how to calculate these
steady-state probabilities more efficiently than
directly solving the linear system in Eq. (3).

Observe that given any M and demand distribu-
tion, the transition matrix P and therefore q only
depends on D ¼ t� s, we define the long-run
average cost CðD; tÞ ¼

PM
i¼1 qiLðtþ iÞ. We next

establish an important property for the heuristic
policy.

Proposition 1. For a given D, the smallest optimal t�

satisfies t�oy�pt� þM and CðD; tÞ is convex in t.
Proof. To prove these bounds for t�, we focus on LðyÞ

since the qi remain as constants for a fixed D. Assume
that y�pt�. Since LðyÞ is nondecreasing for yXy�,
Lðt� þ i � 1ÞpLðt� þ iÞ for i ¼ 1; 2; . . . ;M, hence
CðD; t� � 1Þ ¼

PM
i¼1 qiLðt

� � 1þ iÞp
PM

i¼1 qi Lðt� þ

iÞ ¼ CðD; t�Þ. This contradicts with the definition of t�.
Similarly, assume that t� þMoy�. Since LðyÞ

is nonincreasing for ypy� and y� is the smallest
global minimum, Lðt� þ i þ 1ÞoLðt� þ iÞ for
i ¼ 1; 2; . . . ;M, which again contradicts with the
definition of t�. Finally, the convexity of CðD; tÞ
follows directly from the convexity of LðyÞ.

For a given D, we only need to calculate q once for
all t. We design the following algorithm to compute
the t� and s� that minimize the long-run average cost
within the class of the ðs; tÞ heuristic policies:
1.
 For each D 2 f0; 1; 2; . . . ;M � 1g, calculate P and
solve Eq. (3) for q.
2.
 For each D and q, identify t ¼ tðDÞ from the set
fy� �M ; y� �M þ 1; . . . ; y� � 1g that minimizes
CðD; tÞ.
3.
 Find D� that minimizes CðD; tðDÞÞ, and let t� ¼

tðD�Þ and s� ¼ t� þ D�.

The first step requires a computational time propor-
4
tional to OðM Þ if a Gaussian elimination with partial

pivots is used to solve the linear system in Eq. (3) with
rank M. The second step requires a computational time
proportional to Oð1

2
M2Þ because it can take advantage

of the convexity of CðD; tÞ. For real-world systems in
which M is hundreds and even thousands, we can
improve the efficiency of the algorithm by discretizing
demand distribution into bins of appropriate size. &

5. Computational study

The objective of this section is two-fold: first, to
demonstrate the effectiveness of the ðs; tÞ policy, and
second, to develop insights on the impact of MOQ.
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Fig. 1. The best ðs; tÞ policy vs. the optimal policy.

p=ðpþ hÞ ¼ 0:90.
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We conduct numerical studies with respect to the
following nondimensional parameters, M=EðDÞ,
p=ðpþ hÞ (the penalty cost ratio) and demand
coefficient of variation (c.v.). We assume that the
demand in one period follows normal distribution
with EðDÞ ¼ 10 unless otherwise mentioned. To
ensure nonnegative demand, we truncate the normal
distribution and let PfD ¼ 0g be the probability that
the normal random variable is equal to or small
than zero. Normal distribution is one of the
commonly used distributions for inventory applica-
tions; we refer the reader to Nahmias (2001, p. 246–
247) and Silver et al. (1998, p. 272–273) for detailed
justification of its significance.

5.1. Effectiveness of the ðs; tÞ policy

We study the performance of the ðs; tÞ policy by
comparing the long-run average costs of the best
ðs; tÞ policies to those of the optimal policies. Due to
the zero fixed ordering cost, many companies utilize
simple ðs;SÞ policies with S � s ¼M to control
inventories in practice. To demonstrate the effec-
tiveness of the best ðs; tÞ policy, we also compare its
performance to that of the best feasible ðs;SÞ policy
with S � sXM.

To calculate the optimal policy under the average
cost criterion, we solve numerically the average cost
optimality equations of the inventory system with
MOQ using value iteration, see e.g., Veatch and
Wein (1996) or Bertsekas (1995). The state space is
truncated, and its size is determined by testing larger
and larger state space until the results are insensitive
to the increments.

The numerical examples are chosen as follows.
The holding cost h is set to 1. M varies from 0 to 50
in increment of 1, p=ðpþ hÞ (penalty ratio for
convenience) takes values of 0:80, 0:85, 0:90, or
0:95, and the demand c.v. varies from 0:1; 0:2; 0:3 to
0:4. Altogether, the combination of these choices
results in 816 instances in the numerical study. For
each instance, we measure the effectiveness of the
best ðs; tÞ policy with respect to the optimal policy
by the % gap, G1, between the costs of these
policies, as follows:

G1 ¼ 100� ½best ðs; tÞ average cost

� optimal average cost�=optimal average cost.

For each instance, we also measure the effectiveness
of the best ðs; tÞ policy with respect to the best
feasible ðs;SÞ policy by the % gap, G2, between the
costs of these policies, as follows:

G2 ¼ 100� ½best feasible ðs;SÞ average cost

� best ðs; tÞ average cost�=best ðs; tÞ average cost.

Table 1 summarizes the maximum and average %
gaps, G1, over all instances between the optimal
policies and the best ðs; tÞ (in columns 4 and 5), and
maximum and average % gaps, G2, between the best
ðs; tÞ policy and the best feasible ðs;SÞ policy (in
columns 6 and 7).

Table 1 demonstrates that the performances of
the best ðs; tÞ policies are very close to those of the
optimal policies for most combinations of the
parameters except for a few cases with very small
values of the demand coefficient of variation, e.g.,
c.v. ¼ 0:1. For instance, at c.v. ¼ 0:2, the max-
imum and average G1 vary between 0:72% and
1:87% and between 0:03% and 0:13%, respectively.
Similar results are obtained at c.v. ¼ 0:3 and 0:4.
Indeed, as c.v. increases, G1 tends to decrease. When
c.v. ¼ 0:4, both the maximum and average G1

reduce to nearly 0%. These results indicate that the
best ðs; tÞ policy has a close to optimal performance
for a wide range of system parameters, and it tends
to perform better as demand variability increases.
Fig. 1 shows that the long-run average costs
(normalized by the global minimum value of LðyÞ)
of the optimal policy and the best ðs; tÞ policy almost
completely overlap for c.v. ¼ 0:2; 0:3, and 0:4.

The only cases in which the ðs; tÞ policies may not
perform as well are those at very small demand
coefficient of variation, e.g., c.v. ¼ 0:1. The max-
imum % gap between the optimal policy and the
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best ðs; tÞ policy can be substantial: it is 16:65%
when p=ðpþ hÞ ¼ 0:80, and 24:51% when
p=ðpþ hÞ ¼ 0:95. However, the average % gaps
are much smaller, varying from 1:16% to 2:15%
(see also Fig. 1).

Large % gaps in these cases clearly indicate that
the optimal policies do not have the same structure
as the ðs; tÞ policy. To develop insights into the
structure and the complexity of the optimal policies,
we compute the optimal policy for the case
corresponding to the maximum G1 in column 4 at
p=ðpþ hÞ ¼ 0:90 (where M=ðEðDÞ ¼ 1Þ). The opti-
mal policy as well as the best ðs; tÞ policy are
presented in Fig. 2 in which the X -axis is the initial
inventory position x and Y -axis is the optimal
ordering quantities y� x.

Fig. 2 demonstrates that the optimal ordering policy
under the average cost criterion may not have the same
structure as the ðs; tÞ policy for normal demand
distribution with small coefficient of variation. In the
above example, the optimal policy is identical to the
best ðs; tÞ policy outside the interval ½5; 10� where it has
a ‘‘peak’’, i.e., it orders more than 10 (which equals to
the MOQ) units of the ðs; tÞ policy. In this example, it is
clear that the ðs; tÞ policy is much simpler than the
optimal policy because it eliminates the ‘‘peak’’. We
also study more general demand distributions with
multiple modes. The first demand distribution,
denoted by discrete 1, has two modes where
D ¼ f5; 6; 7; 8; 9; 10; 11; 12g and the probability
density function is p ¼ 3

10
; 1
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; 1
60
; 1
60
; 1
60
; 1
60
; 1
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; 3
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0

Fig. 2. The ordering quantities under the optimal policy and the

best ðs; tÞ policy.
modes where D ¼ f5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15g
and the probability density function is p ¼

f0:2; 0:0125; 0:0125; 0:0125; 0:0125; 0:2; 0:0125; 0:0125;
0:0125; 0:0125; 0:5g. Then numerical study of these
examples (not reported here) shows that the optimal
policy can have multiple ‘‘peaks’’, and the ðs; tÞ policy
essentially eliminates these peaks by ordering exactly
the MOQ.

These examples are consistent with the analysis of
Zhao and Katehakis (2006) which considers a finite
horizon model under the discounted cost criterion.
In a two-period example, Zhao and Katehakis
(2006) show that the cost functions may have
multiple local minimums which result in the
‘‘peaks’’. These examples demonstrate that the
‘‘peaks’’ carry on to the infinite horizon model
under the average cost criterion. In such cases, the
optimal policy does not have a simple form.

We next compare the best ðs; tÞ policies to the best
feasible ðs;SÞ policies with S � sXM. We compute
the best feasible ðs;SÞ policy by enumerating all
possible combinations of s and S in a sufficiently
large region, and evaluating the performance of
each combination by Zheng and Federgruen (1991).
Table 1 shows that the best ðs; tÞ policies perform
better than the best feasible ðs;SÞ policies in all
instances. In addition, the % gaps, G2, between
these two policies are substantial. For instance,
Table 1 demonstrates that when c.v. ¼ 0:1, the
maximum G2 is ranging from 154% to 93:51% for
different p=ðpþ hÞ ratios, while the average G2

varies from 15:88% to 16:87%. As c.v. increases, the
gaps between the best ðs; tÞ policies and the best
feasible ðs;SÞ policies tend to decrease, however,
even at c.v. ¼ 0:4 and p=ðpþ hÞ ¼ 0:90, the max-
imum and average G2 are still as large as 17:19%
and 9:15%, respectively. The best ðs; tÞ policies tend
to outperform the best feasible ðs;SÞ policies for two
reasons: (1) the optimal policies for the single-
period problems have the same form as the ðs; tÞ
policies (Zhao and Katehakis, 2006). (2) When
S � s ¼M, the ðs;SÞ policies are special cases of the
ðs; tÞ policies.

To better illustrate the effectiveness of the ðs; tÞ
policy with respect to the optimal policy and the
ðs;SÞ policy, we plot in Fig. 3 the normalized (by the
global minimum value of LðyÞ) long-run average
costs of the optimal policy, the best ðs; tÞ policy and
the best feasible ðs;SÞ policy as functions of
M=EðDÞ, for the ‘‘unfavorable’’ values of c.v. ¼
0:1 or 0:3. The figure shows that the long-run
average costs of the best ðs; tÞ policies are much
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Table 1

The effectiveness of the ðs; tÞ policy

Demand Best ðs; tÞ policy (G1) Best ðs;SÞ policy (G2)

EðDÞ ¼ 10 p
pþh

M
EðDÞ

MaxG1 AvgG1
M

EðDÞ
¼ 3 ¼ 5 MaxG2 AvgG2

M
EðDÞ
¼ 3 ¼ 5

c.v. ¼ 0:1 0.80 [0, 5] 16.65 1.16 0.01 0.00 154.12 16.87 25.80 9.77

0.85 [0, 5] 18.17 1.49 0.00 0.00 130.01 16.44 30.17 8.44

0.90 [0, 5] 22.37 1.84 0.67 0.02 111.36 15.88 28.31 11.43

0.95 [0, 5] 24.51 2.15 1.75 0.10 93.51 16.01 24.67 12.17

c.v. ¼ 0:2 0.80 [0, 5] 0.72 0.03 0.00 0.00 73.31 16.22 16.95 8.63

0.85 [0, 5] 1.08 0.05 0.00 0.00 80.21 17.01 17.64 8.57

0.90 [0, 5] 1.03 0.08 0.00 0.00 83.31 16.79 17.52 8.45

0.95 [0, 5] 1.87 0.13 0.00 0.00 81.54 16.61 16.94 8.58

c.v. ¼ 0:3 0.80 [0, 5] 0.01 0.00 0.00 0.00 28.03 10.47 9.97 8.92

0.85 [0, 5] 0.02 0.00 0.00 0.00 28.84 10.41 9.95 6.97

0.90 [0, 5] 0.04 0.00 0.00 0.00 28.34 10.02 9.59 6.78

0.95 [0, 5] 0.06 0.00 0.00 0.00 28.22 9.90 9.36 6.53

c.v. ¼ 0:4 0.80 [0, 5] 0.00 0.00 0.00 0.00 17.57 9.24 10.13 7.24

0.85 [0, 5] 0.00 0.00 0.00 0.00 17.62 9.34 10.07 7.19

0.90 [0, 5] 0.00 0.00 0.00 0.00 17.19 9.15 9.60 7.01

0.95 [0, 5] 0.00 0.00 0.00 0.00 17.26 8.75 8.92 6.79
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Fig. 3. The best ðs; tÞ policy vs. the optimal policy vs. the best

ðs;SÞ policy.

B. Zhou et al. / Int. J. Production Economics 106 (2007) 523–531 529
closer to those of the optimal policies than the best
feasible ðs;SÞ policies. Indeed, there are no sig-
nificant differences between the best ðs; tÞ policies
and the optimal policies, while the differences
between the best feasible ðs;SÞ policies and the
optimal policies are quite substantial.

It is clear from Figs. 1 and 3 that the gaps among
the optimal, ðs; tÞ and ðs;SÞ policies are negligible
when M=EðDÞ is relatively small (p0:5). As
M=EðDÞ increases, the gaps may increase but not
always. As demonstrated by Fig. 3 and Table 1
columns ‘‘M=EðDÞ ¼ 3’’ and ‘‘¼ 5’’, the gaps vary
for different MOQs.
For comparison, we study the case of determi-
nistic demand where PfD ¼ 10g ¼ 1 (i.e., c.v. ¼ 0).
As before, the MOQ varies from 0 to 50, and
penalty cost ratio takes values of 0:80, 0:95, 0:90 or
0:95. We compute the average costs under the
optimal policy, the best ðs; tÞ policy, and the best
feasible ðs;SÞ policy, respectively. Our numerical
results show that the maximum and average gaps
between the optimal policy and the best ðs; tÞ policy
continue to increase as c.v. decreases from 0.1 to 0.
However, the gaps between the best ðs; tÞ policy and
the best feasible ðs;SÞ policy are smaller at c.v. ¼ 0
relative to c.v. ¼ 0:1. This can be explained as
follows: at c.v. ¼ 0:1, the gap between the best ðs; tÞ
policy and the best feasible ðs;SÞ policy reaches its
maximum when M/E(D) is an integer. Whereas at
c.v. ¼ 0, i.e., deterministic demand, the gap be-
tween the best ðs; tÞ policy and the best feasible ðs;SÞ
policy is zero when M=EðDÞ is an integer. Finally,
we observe that gaps are always positive which
implies that the best ðs; tÞ policies outperform the
best feasible ðs;SÞ policies.

To summarize, our computational study reveals
that
�
 In general, the optimal policies of the inventory
systems with MOQ have complex structures that
make them difficult to identify and implement in
practice.
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�

Penalty Ratio = 0.85t
The best ðs; tÞ policies have close to optimal
performance under reasonable conditions.
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Fig. 4. The impact of M=EðDÞ and p=ðpþ hÞ. c.v. ¼ 0:3.
Although the ðs; tÞ policy can be substan-
tially inferior to the optimal policy in the special
cases of small demand c.v., it always and
significantly outperforms the best feasible ðs;SÞ
policy.

5.2. Sensitivity studies

Fig. 1 illustrates that the long-run average costs at
different demand c.v.s increase as M=EðDÞ in-
creases, indicating that higher MOQ requirement
leads to higher average cost. However, the costs are
in general not convex functions of M. The convex
relationship between the cost and M was observed
first by Hammond and Raman (1995) for the single-
period problem. In the multi-period case studied
herein, the optimal cost-to-go functions of the
multiple period problem are typically not convex,
and therefore, the convex relationship in general
does not hold.

We next quantify the impact of demand varia-
bility on the effect of MOQ. To this end, we refer to
Fig. 1 for the normalized average cost as a function
of M=EðDÞ at different levels of c.v. ¼ 0:1; 0:2; 0:3,
and 0:4. The results based on both the ðs; tÞ policy
and the optimal policy reveal that
�
 When M is relatively large, e.g., greater than
EðDÞ, a higher level of demand variability leads
to a lower rate of cost increase as M=EðDÞ

increases.

�
 When M is relatively small, e.g., less than EðDÞ,
the demand variability does not have a significant
impact on the normalized marginal costs.

We finally study the long-run average cost as a
function of M=EðDÞ under different levels of p=ðpþ
hÞ in Fig. 4. The costs are those corresponding to the
best ðs; tÞ policy, and are normalized by the global
minimum value of LðyÞ. Fig. 4 shows that
�
 When M=EðDÞ is relatively small, e.g. less than
or equal to 1, p=ðpþ hÞ does not have a
significant impact on the normalized marginal
costs.

�
 When M=EðDÞ is relatively large, the average
cost at a higher value of p=ðpþ hÞ increases at a
slower rate than that at a lower value of
p=ðpþ hÞ.
6. Conclusion

In this paper, we analyze a class of simple
heuristic policies, the ðs; tÞ policies, to control
stochastic inventory systems with minimum order
quantities. Policies in this class are easily implemen-
table in practice. In the case of the average cost
criterion, we demonstrate the effectiveness of the
optimal ðs; tÞ policy within the class with respect to
the optimal policy as well as the widely used ðs;SÞ
policies. We also develop insights into the impact of
MOQ on repeatedly ordered items.
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