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Abstract

In many industries, customers are offered free shipping whenever an order placed exceeds a minimum quantity specified by suppliers.
This allows the suppliers to achieve economies of scale in terms of production and distribution by encouraging customers to place large
orders. In this paper, we consider the optimal policy of a retailer who operates a single-product inventory system under periodic review.
The ordering cost of the retailer is a linear function of the ordering quantity, and the shipping cost is a fixed constant K whenever the
order size is less than a given quantity – the free shipping quantity (FSQ), and it is zero whenever the order size is at least as much as the
FSQ. Demands in different time periods are i.i.d. random variables. We provide the optimal inventory control policy and characterize its
structural properties for the single-period model. For multi-period inventory systems, we propose and analyze a heuristic policy that has
a simple structure, the (s, t,S) policy. Optimal parameters of the proposed heuristic policy are then computed. Through an extensive
numerical study, we demonstrate that the heuristic policy is sufficiently accurate and close to optimal.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

In many industries, customers or retailers are offered free shipping service whenever an order placed exceeds a minimum
quantity specified by suppliers. This allows the suppliers to achieve economies of scale in terms of production and distri-
bution by modifying their customers’ purchasing behavior. The free shipping quantity (FSQ) practice is not uncommon
even in international trade. Due to substantial production setup costs and longer lead times, international companies often
use minimum free shipping quantity to avoid frequent small orders and thus achieve economies of scale by encouraging
customers to place larger orders, less frequently.

Companies also provide more flexible options where their customers are allowed to order below the FSQ at an addi-
tional shipping or handling charge. Minimum order with free shipping option has significant impact and challenges the
efficient control of retailers’ inventory. In fact, our analysis demonstrates that the free shipping option helps to enhance
retailers’ flexibility in responding to demands, which are varied and highly uncertain, and consequently it decreases the
retailers’ total costs (ordering and inventory costs) when used properly.

In this paper, we consider a retailer who manages a single-product inventory system with free shipping option and sto-
chastic demands. The ordering cost of the retailer is linear if its order size is no less than Q, i.e. the free shipping quantity
(FSQ), and an additional fixed shipping cost K is imposed whenever the order quantity falls below the FSQ. We model this
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problem using stochastic dynamic programming. Under general assumptions on demand processes, we characterize
structural properties of optimal cost functions and determine the optimal inventory policy for the retailer in single period.
We show that the structure of optimal policies for the free shipping option problem is in general more complex than that of
the models with fixed setup cost or minimum order quantity (or commitment) only. We discuss how our model can be
extended to include constant lead times by following standard procedures (cf. Heyman and Sobel, 1984). In the case of
stochastic lead times, additional assumptions are required on the sequence of order received, see Kaplan (1970) for the case
of exclusion of order crossover, and Zalkind (1978) and Bradley and Robinson (2005) for the case of order crossover.

For multi-period inventory systems, optimal policies have quite complicated structures and hence they are difficult to
identify and implement into practice. We propose and analyze a heuristic policy that has a simple structure, namely the
(s, t,S) policy, where S � s = Q. The (s, t,S) policy works as follows: if the initial inventory position x is no more than
s, order up to s + Q; if the initial inventory is above s but no more than t, order exactly the free shipping quantity Q; if
the initial inventory exceeds t but no more than S, order amount a(x) < Q (x is the initial inventory position); if the initial
inventory is above S, do not order.

The paper is the first attempt to study and analyze the impacts of free shipping and free shipping quantity on inventory
control policies. We focus on: (1) presenting structural analysis of optimal inventory policies, (2) proposing effective heu-
ristic policies for multi-period inventory systems, and (3) quantifying the impacts of free shipping option and key param-
eters of the model. We conduct an extensive computational study and show that the heuristic policy is sufficiently accurate
and it provides close-to-optimal solutions. We also discuss managerial insights regarding the free shipping option and the
fixed cost K, the free shipping quantity Q, demand variability, and the service level on the inventory systems.

The remainder of this paper proceeds as follows. In Section 2, we offer a brief review of related literature. In Section 3,
we formulate the problem mathematically and study the model in finite and infinite time horizons under the total dis-
counted cost criterion. A discussion of incorporating lead times into the model is provided. In Section 4, we characterize
structural properties of optimal cost functions and inventory policies for single-period inventory systems. In Section 5, we
propose and analyze a heuristic policy for multi-period inventory systems. In Section 6, an extensive numerical study is
conducted to gauge the effectiveness of the heuristic policy. Managerial insights with respect to systems parameters are also
provided and analyzed. Finally, we give the conclusions of the paper in Section 7.

2. Literature review

One of the key concerns in production and inventory problems is how to effectively control production, inventory hold-
ing, and stockout costs. When replenishing inventories, customers or retailers generally face three different types of require-
ments from their suppliers: (a) fixed setup cost, (b) fixed batch size, or (c) minimum order quantity.

For fixed setup cost problems, the seminal work of Clark and Scarf (1960) unveils a critical inventory replenishment
problem for a periodic-review, finite horizon, serial multi-echelon inventory system where demand occurs at the lowest
stage. They show that the optimal inventory control policy of the overall system follows a base-stock policy for every
stage, provided that there is a fixed cost only at the highest stage. Scarf (1960) proves that an (s,S) policy is optimal
for periodic-review, single-product inventory systems with fixed ordering cost and general demand distribution. Federgru-
en and Zipkin (1984) later extend the results to a periodic-review, infinite horizon case under both discounted and average
cost criteria.

In the second stream of research on fixed batch size, Veinott (1966) analyzes a dynamic inventory model with fixed
batch size and proves that the (R,nQ) policy is optimal. This policy requires that if the inventory level is above the re-order
point R, no order needs to be placed. Whereas, if the inventory level drops below point R, orders should be placed in
batches to raise the inventory level to the smallest value above the re-order point. Chen and Zheng (1994) provide a sim-
ple way to show that the base-stock policy remains optimal when each stage orders in batches under some modified
conditions.

The third group of existing papers where order quantity is the major theme includes Fisher and Raman (1996), Robb
and Silver (1998), Zhao and Katehakis (2006), and Zhou et al. (2007). Fisher and Raman (1996) consider an inventory
system where the retailer faces both a minimum order quantity requirement and a capacity constraint. They formulate
the problem into a stochastic program and provide optimal policies for a two time-period model. Robb and Silver
(1998) study a periodic review inventory model with minimum order quantities. They conduct extensive simulation exper-
iments that demonstrate situations where a simple ‘rounding up’ decision rule performs poorly. The papers that have close
ties with this research are Zhao and Katehakis (2006) and Zhou et al. (2007).

Zhao and Katehakis (2006) explore a single-item stochastic inventory system where the retailer has to order either none
or at least as much as the minimum order quantity. No fixed cost is considered in the system. They establish models in both
finite and infinite horizons under discounted cost criterion using dynamic programming. By introducing a new ‘‘M-increas-
ing” concept, they characterize the optimal policy in certain regions of the state space for any time period. Zhou et al.
(2007) extend the work and develop a simple and effective heuristic policy for single-product stochastic inventory systems
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with minimum order quantity and a linear ordering cost. They develop an efficient algorithm to compute the optimal values
of the heuristic parameters in the infinite time horizon under the average cost criterion. Through numerical studies, they
show that the performance of the heuristic policy is very close to that of the optimal policy and it significantly outperforms
the (s,S) policy under general conditions. In this paper, we consider a different and more complicated problem where the
inventory system involves an order quantity requirement, a fixed cost as well as a free shipping option.

In all existing literature, either a fixed ordering cost or an order quantity requirement is considered. None of these papers
analyze how the option of free shipping influences inventory control policies. In real life business practice, retailers some-
times need to order below the free shipping quantity and pay the extra shipping fee, due to demand variability, inventory
capacity, and financial constraints. Hence, it is practically important to study and analyze ordering policies under the free
shipping option and provide related managerial insights. This paper represents, to our knowledge, the first attempt towards
this end.
3. The model

We model a stochastic inventory system where a retailer operates a single product and reviews its inventory periodically.
The demand in time period n is denoted as Dn, where Dn are i.i.d. random variables with finite means E(Dn). At the begin-
ning of each time period, the retailer reviews its inventory and may place an order to its supplier; at the end of the time
period, demand is realized and the retailer fills the demand as much as it can from the available stock. If the retailer is
not able to satisfy all the demand, the excessive amount is backlogged. In each time period, the retailer incurs inventory
holding cost h per unit for any unsold item and penalty cost p per unit for any extra demand. The supplier has ample sup-
ply with unlimited production capacity. Denote Q to be the free shipping quantity (FSQ) specified by the supplier. The
ordering cost of a units is ca (i.e. linear) if the order size a of the retailer is at least as much as Q; whereas a fixed shipping
cost K is imposed in addition to the linear ordering cost if the order size is below Q.

For the ease of exposition, we assume that products arrive at the retailer’s site immediately after an order is placed. The
model can be extended to include constant or stochastic lead times following standard procedures, see Heyman and Sobel
(1984). In the case of stochastic lead times, additional assumptions are required, see Kaplan (1970) and Bradley and Rob-
inson (2005).

Let x be the inventory position at the beginning of a time period which can take negative values, it is equal to the inven-
tory on-hand minus backorders; and let y be the inventory position after the order decision is made. Then the action
a = a(x) = y � x is the amount ordered in that time period. Let AK

x ¼ f1; . . . ;Q� 1g denote the set of all actions that order
below the free shipping quantity, and let A0

x ¼ f0g [ fQ;Qþ 1; . . .g denote the set of all feasible actions that order none or
at least Q.

We next formulate the problem as a Markov Decision Process (MDP). We first establish the finite and infinite horizon
models under the total discounted cost criterion, then we consider the model under the long-run average cost per unit time.
In the latter case, it is known that the linear ordering cost can be ignored, see, e.g. Zheng and Federgruen (1991). For a
given inventory position x and an action a, the single-period cost functions are
caþ EðLðxþ a;DÞÞ; a 2 A0
x ; ð1Þ

K þ caþ EðLðxþ a;DÞÞ; a 2 AK
x ; ð2Þ
where L(x + a,D) = h(x + a � D)+ + p (D � x � a)+ is the holding or backorder penalty cost when the demand of the per-
iod is D, E(�) is its expectation with respect to the demand distribution, K is the optional shipping cost. Besides, y = x + a

(an integer) is the inventory position after ordering a units.
Given an initial inventory position x and a discount factor b 2 (0, 1), let UN(x,b) (respectively U(x,b)) denote the

expected minimum total discounted inventory and ordering costs for a finite horizon of length N P 1 (respectively infinite
horizon) problem. Using standard dynamic programming arguments, we can show that the dynamic programming opti-
mality equations for the finite and the infinite horizon problems are
Unðx; bÞ ¼ min
infa2A0

x
caþ EðLðxþ a;DnÞÞ þ bEðU n�1ðxþ a� Dn; bÞÞf g;

mina2AK
x

K þ caþ EðLðxþ a;DnÞÞ þ bEðU n�1ðxþ a� Dn; bÞÞf g

( )
; n ¼ 1; . . . ;N ; ð3Þ

Uðx; bÞ ¼ min
infa2A0

x
caþ EðLðxþ a;DÞÞ þ bEðUðxþ a� D; bÞÞf g;

mina2AK
x

K þ caþ EðLðxþ a;DÞÞ þ bEðUðxþ a� D; bÞÞf g

( )
: ð4Þ
Without loss of generality, we assume that the salvage value of any unsold item at the end of the planning horizon is
zero, U0 (x,b) = 0. Define Vn(x,b) = Un(x,b) + cx, " n P 1.
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Based on action sets A0
x and AK

x , we further define for the last time period U 0
1ðy; bÞ ¼ cy þ EðLðy;D1; bÞÞ and

U K
1 ðy; bÞ ¼ K þ cy þ EðLðy;D1; bÞÞ. Similarly, for period n P 2, we define U 0

nðy; bÞ ¼ cð1� bÞy þ EðLðy;DnÞÞþ
bEðV n�1ðy � Dn; bÞÞ and U K

n ðy; bÞ ¼ K þ cð1� bÞy þ EðLðy;DnÞÞ þ bEðV n�1ðy � Dn; bÞÞ:
Then, we can re-write Eq. (3) for the finite horizon as follows:
V 1ðx; bÞ ¼ infffU K
1 ðy; bÞ : xþ 1 6 y 6 xþ Q� 1g; fU 0

1ðy; bÞ : xþ Q 6 yg; U 0
1ðx; bÞg;

V nðx; bÞ ¼ infffU K
n ðy; bÞ : xþ 1 6 y 6 xþ Q� 1g; fU 0

nðy; bÞ : xþ Q 6 yg; U 0
nðx; bÞg þ 2bcEðDnÞ; n P 2: ð5Þ
Similarly, for the infinite horizon model with the demand of the period D, from Eq. (4) we have
V ðx; bÞ ¼ infffU Kðy; bÞ : xþ 1 6 y 6 xþ Q� 1g; fU 0ðy; bÞ : xþ Q 6 yg; U 0ðx; bÞg þ 2bcEðDÞ: ð6Þ

In the rest of the paper, we will consider policies under which the state changes in time following Markov Chain and

satisfies the irreducibility conditions. It is easy to see that policies that violate the irreducibility conditions are either order-
ing too little or ordering too much, and this type of policies can not be optimal. Under the long-run average cost criterion,
it is known that the limit V(x) below exists and it is independent of x
V ðxÞ ¼ limb!1ð1� bÞV ðx; bÞ: ð7Þ

The average cost optimal policies can be obtained either by solving linear programs (Derman, 1970), or by solving average
cost optimality equations using value iteration (see Tijms, 1994, Chapter 3, pp. 206–209).

Lead times, deterministic and stochastic, can be included into the model under necessary conditions. This is typically
done by defining the state variable to represent inventory on-hand plus inventory on-order and by propitious modifications
to the cost functions and transition probabilities. For instance, consider the case in which there are s time periods between
order placement and order receipt of the goods for the retailer. Indeed, following Heyman and Sobel (1984), at time period
n, re-define the retailer’s inventory position x to be the inventory on-hand plus items on-order (when goods ordered s peri-
ods ago arrive at retailer’s site) before the ordering decision at the beginning of period n has been made. Demand is then
met by the available inventory. Let a denote the amount ordered in period n. Then we can re-define the single-period cost
functions corresponding to inventory position x and action a as follows:
caþ EðLðxþ a; bDsÞÞ; a 2 A0
x ;

K þ caþ EðLðxþ a; bDsÞÞ; a 2 AK
x ;
where bDs ¼
Ps

i¼0Di and Lðy; bDsÞ ¼ hðy � bDsÞþ þ pðbDs � yÞþ is the holding or backorder penalty cost when the demand of
periods n,n + 1, . . . ,n + s is bDs. Then, the optimality Eqs. (3) and (4) can be revised by substituting the above expressions
for the single-period cost functions.

4. Optimal policy for single-period systems

We next develop optimal ordering policies for single-period inventory systems with free shipping option in Theorems
4.1–4.3.

In view of the last time period in the planning horizon, we have (for simplicity, we omit discount factor b hereafter)
V 1ðxÞ ¼ inffU 0
1ðxÞ; fU 0

1ðyÞ : xþ Q 6 yg; fU K
1 ðyÞ : xþ 1 6 y 6 xþ Q� 1gg;
where x is the initial inventory position, and y is the inventory position after the order decision is made. Hence for p > c,
clearly the single-period cost function U 0

1ðyÞ is convex and satisfies U 0
1ðyÞ ! þ1 as inventory position jyj? +1. Let y�1 be

the value where U 0
1ðyÞ reaches its global minimum. Similarly, UK

1 ðy þ qÞ (q 2 {1, . . . ,Q � 1}) is also convex and let y�1ðqÞ be
the value where U K

1 ðy þ qÞ has its global minimum.
For any convex function U(y) ? +1 as jyj? +1, Zhao and Katehakis (2006, Lemma 3.2) shows that there is an

unique junction y0 such that U(y0) = U(y0 + Q) and U(x + Q) 6 U(x) "x < y0, U(x) 6 U(x + Q0) "x > y0"Q0 P Q. Clearly
Fig. 1. Cost functions of a single-period model with free shipping option.
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convex function U 0
1ðyÞ follows these properties. We let y1 be the junction such that convex functions

U 0
1ðy1 þ QÞ ¼ U K

1 ðy1 þ qÞ; y2 be the junction where U 0
1ðy2Þ ¼ U 0

1ðy2 þ QÞ; and y3 be the junction where
U 0

1ðy3Þ ¼ UK
1 ðy3 þ qÞ. In Fig. 1, we illustrate the structure of the ordering policies for a single-period inventory system.

We are now ready to develop the following theorems that characterize the optimal policies for single-period inventory
systems with free shipping option.

Theorem 4.1. In single-period inventory systems with free shipping option, if p > c and y2 < y�1ðqÞ, the optimal policy for the

retailer, given initial inventory position x, is to order
a�ðxÞ ¼

y�1 � x; if x 2 ð�1; y�1 � Q�;
Q; if x 2 ðy�1 � Q; y1�;
y�1 � x; if x 2 ðy1; y2�;
y�1 � x; if x 2 ðy2; y

�
1ðqÞ�;

qðxÞ; if x 2 ðy�1ðqÞ; y3�;
0; otherwise:

8>>>>>>>><>>>>>>>>:

Proof. For x 6 y�1 � Q, obviously, it is optimal for the retailer to raise its inventory up to global minimum y�1. If
y�1 � Q < x 6 y1, we first notice that U 0

1ðxþ QÞ 6 U 0
1ðxÞ, which implies that the system should order at least Q; next,

because U 0
1ðyÞ is convex and xþ Q > y�1, then U 0

1ðxþ Q0ÞP U 0
1ðxþ QÞ, for all Q0 > Q. Hence, ordering exactly Q is opti-

mal. For y1 < x 6 y2 and y2 < x 6 y�1ðqÞ, it is optimal to order up to y�1 as is the case of x 6 y�1 � Q. If y�1ðqÞ < x 6 y3; it is
optimal to order q(x), 1 + x 6q(x) 6 Q + x � 1 and it is dependent upon initial inventory position x, since
UK

1 ðxþ qÞ < U 0
1ðxÞ for any q 2 {1,. . .,Q � 1}. And finally, if x > y3, since U K

1 ðxþ q0ÞP U 0
1ðxÞ, for all q0 P q, thus the opti-

mal policy is to order zero. h

Theorem 4.2. In single-period inventory systems with free shipping option, if p > c and y2 > y�1ðqÞ, the optimal policy for the

retailer, given initial inventory position x, is to order
a�ðxÞ ¼

y�1 � x; if x 2 ð�1; y�1 � Q�;
Q; if x 2 ðy�1 � Q; y1�;
y�1 � x; if x 2 ðy1; y

�
1ðqÞ�;

qðxÞ; if x 2 ðy�1ðqÞ; y2�;
qðxÞ; if x 2 ðy2; y3�;
0; otherwise:

8>>>>>>>><>>>>>>>>:

Proof. If x 6 y�1 � Q, we proved in Theorem 4.1, it is optimal to order up to y�1. If y�1 � Q < x 6 y1, ordering Q is the opti-
mal policy. If y1 < x 6 y�1ðqÞ, it is again optimal to order up to y�1. For y�1ðqÞ < x 6 y2 and y2 < x 6 y3, the optimal policy is
to order q(x). Proof is shown in Theorem 4.1. And finally, for x > y3, order nothing is optimal. h

Theorem 4.3. In single-period inventory systems with free shipping option, if p > c and y2 ¼ y�1ðqÞ, the optimal policy for the

retailer, given initial inventory position x, is to order
a�ðxÞ ¼

y�1 � x; if x 2 ð�1; y�1 � Q�;
Q; if x 2 ðy�1 � Q; y1�;
y�1 � x; if x 2 ðy1; y

�
1ðqÞ ¼ y2�;

qðxÞ; if x 2 ðy�1ðqÞ ¼ y2; y3�;
0; otherwise:

8>>>>>><>>>>>>:

Proof. The proof is shown in Theorems 4.1 and 4.2.

Theorems 4.1–4.3 demonstrate that the optimal policies for single-period inventory systems with free shipping option
have different and more complex structures than the (s,S) policy that is optimal for the models with fixed cost only. For a
detailed discussion of the single-period model with fixed cost only, we refer to Ross (1992, Chapter 8, pp. 169–171). We
point out that if the fixed cost K is sufficiently large such that U 0

1ðyÞ 6 U K
1 ðyÞ, then the cost function of the single time

period problem takes the form below:
V 1ðxÞ ¼ inffU 0
1ðxÞ; U 0

1ðyÞ : y P xþ Qg:

Hence, in this case the ordering decision only involves the order quantity Q without the free shipping option.
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From Fig. 1, for instance, we can observe that if the retailer’s inventory position is less than or equal to y�1 � Q, it is optimal
for the retailer to raise its inventory to y�1; if the inventory position is greater than y�1 � Q but less than or equal to y1, then it is
optimal to order the free shipping quantity Q. If the inventory position is greater than y1 but less than or equal to y�1ðqÞ, it is
again optimal to order up to y�1; if the inventory position is greater than y�1ðqÞbut less than or equal to y3, the optimal policy is to
order q(x) and pay the extra shipping cost K; finally, if the inventory position is above y3, no order needs to be placed.

The optimal inventory policy is inherently complicated even for the single-period model due to the option of ordering
below Q at a fixed cost K. The multiple intersections of the cost functions separate the inventory position into several
regions, which make the replenishment policies hard to identify and difficult to implement practically. We next propose and
analyze a simple and effective heuristic policy for multi-period inventory systems with free shipping option. h
5. Heuristic policy for multiple-period systems

In light of the optimal control policies of single-period inventory systems, we construct the following class of stationary
policies, namely the (s, t,S) policies. Given integers s, t, and S, where s 6 t 6 S < s + Q, and initial inventory position x, the
policy is to order
aðxÞ ¼

sþ Q� x; if x 2 ð�1; s�;
Q; if x 2 ðs; t�;
/ðxÞ; if x 2 ðt; S�;
0; otherwise:

8>>><>>>:

An (s, t,S) policy works as follows. When the inventory position x is smaller than or equal to s, order up to s + Q; when

x is greater than s but smaller than or equal to t, order exactly the free shipping quantity Q; when x is above t but smaller
than or equal to S, order /(x) 2 {1, . . . ,Q � 1}; and when x is above S, order nothing. One needs to calculate the minimum
cost numerically to determine the corresponding order quantity below Q for t < x 6 S. Notice that when the fixed cost K is
very large, ordering below the free shipping quantity is not optimal, and the heuristic policy reduces to the (s, t) policy dis-
cussed in Zhou et al. (2007).

Let Lx,a be the retailer’s one period inventory holding or backorder penalty cost when its inventory position is x and the
action (order decision) is a, where a 2 A = {0,1, . . . ,+1}. Let Kx,a be the long-term fraction of time (the state – action
frequency) the system is in inventory position x taking action a. And let AK = {1,2, . . . ,Q � 1} be the action set of order
below the free shipping quantity Q. To identify the inventory control policy, we focus on minimizing the long-run average
cost of the retailer, which is denoted by C(s, t,S):
minimize Cðs; t; SÞ ¼
Xs

x¼l

Lx;sþQ�x � Kx;sþQ�x þ
Xt

x¼sþ1

Lx;Q � Kx;Q þ
XS

x¼tþ1

Lx;q � Kx;q þ
Xu

x¼Sþ1

Lx;0 � Kx;0 þ K �
XS

x¼tþ1

Kx;q;
where l and u are, respectively, the lower and the upper state space of x, and x 2 X = {l, l + 1, . . . ,u}, and q 2 {1, . . . ,Q � 1}
is the order quantity below Q. Following Derman (1970), the optimal values of s*, t*, and S* can be obtained by solving the
following linear program of the average cost:
minimize Cðs; t; SÞ
subject to

X
x2X

X
a2A

Kx;a ¼ 1X
x2X

X
a2A

Kx;a � px;y;a ¼
X
a2A

Ky;a; y 2 X

Kx;a P 0;

ð8Þ
where px, y, a is the one-step transition probability from state (inventory position) x to state (inventory position) y when
taking action a.
6. Computational results

In this section, we conduct an extensive computational study on the (s, t,S) policy and present our findings. Our goal is
to determine its effectiveness and performance, and understand the impacts and insights with respect to the free shipping
option, different levels of free shipping quantities, the fixed cost K, and other key parameters of the model.

We conduct computations for three commonly used demand distributions in inventory control literature: the Normal,
the Poisson, and the Uniform distributions. To achieve discrete demand for the Normal distribution, we use the standard
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approach to sum the decimals to the nearest integer (see, e.g. Aviv and Federgruen, 2001). The Normal distribution is a
widely used demand distribution for inventory problems, we refer our readers to Silver et al. (1998) for a detailed justifi-
cation of its significance in business practice. We design the numerical analysis on the following non-dimensional param-
eters: Q/E(D),p/(p + h), and demand variability.

We test Normal demand distributions with a variety of expected mean demands and standard deviations (Normal(l,r)
has mean l and standard deviation r). Specifically, for mean demand l = 10, we use Normal(10,2), Normal(10,5), and
Normal(10,10); for l = 20, we use Normal(20,2), Normal(20,5), and Normal(20,10); and for l = 30, we use Nor-
mal(30, 2), Normal(30,5), and Normal(30,10). We study Poisson demand distributions with expected mean demand
k = 10, 20, and 30, and Uniform distributions [0, 20] and [0,40].

The unit holding cost h was equal to 1. The ratio of the free shipping quantity and the mean demand Q/E(D) was varied
from 0 to 10 in increment of 1. We let the ratio p(p + h) equal to 0.80, 0.85, 0.90 and 0.95. The value of the fixed shipping
cost K was varied from 1 to 5 with an increment of 1. Altogether, there were a total of 3080 instances in our computational
setup.

6.1. Effectiveness of the (s, t,S) policy

We evaluate the heuristic policy by comparing the average costs of the optimal (s, t,S) policies with those of the true
optimal policies. We measure the effectiveness of the (s, t,S) policy with respect to the optimal policy by observing the per-
centage difference between the average costs of these two policies, denoted by Deviation 1, using the formula
Dev: 1 ¼ 100� ðs; t; SÞ average costs�Optimal average costs

Optimal average costs
:

Second, we compare the average costs of the (s, t,S) policy with those of the policy which includes minimum order quan-
tity but does not consider the free shipping option, i.e. the (s, t) policy provided by Zhou et al. (2007). The (s, t) policy works
as follows: if the inventory position is no more than s, order up to s + Q; if the inventory position is above s but no more
than t, order exactly Q; if the inventory position is above t, order nothing. To achieve the average costs of the (s, t) policy,
we follow the method discussed in Zhou et al. (2007). The percentage difference between the average costs of these two
policies is denoted by Deviation 2 and computed using the formula as follows:
Dev: 2 ¼ 100� ðs; tÞ average costs� ðs; t; SÞ average costs

ðs; t; SÞ average costs
:

We first report our computational results for Normal demand distributions in Table 1. The last two columns of the table
contrast Dev. 1 and Dev. 2. Under Normal demand distribution with l = 10, for instance, when the demand standard devi-
ation is quite small r = 2, the average percentage deviation between the (s, t,S) policies and the optimal policies varies from
1.67% to 2.19%. However, the average percentage deviation between the (s, t) and the (s, t,S) policies is significantly larger,
which varies from 15.72% to 16.05%. When r = 5, the average percentage deviation between the (s, t,S) policies and the
optimal policies declines to the range of 0.00% to 0.03%. In fact, as the standard deviation increases, the percentage devi-
ations tend to decrease. At r = 10, the average percentage deviation reduces to 0.00% under the (s, t,S) policy.

Table 1 also presents the results for the cases where the values of expected mean demands become larger. When l
increased to 20, r was equal to 2, 5, and 10, the average percentage deviation between the (s, t,S) policies and the optimal
policies varies from 0.00% to 3.94%. When l = 30, the percentage deviation varies from 0.00% to 5.09%. On the other
hand, the average percentage deviations between the (s, t) and the (s, t,S) policies are all quite substantial. They vary from
10.98% to 18.26% when l = 20, and from 15.18% to 21.28% when l = 30. Results for both cases show that the percentage
deviations between the (s, t,S) heuristic policies and the optimal policies are still very small and the (s, t,S) policies present
quite robust and close-to-optimal performance.

From Table 1, we observe that for a fixed value of mean demand (l = 10, 20 and 30), the percentage deviations decrease
as r increases, and they decline to 0.00% when their standard deviations reach the biggest values. The intuitive interpre-
tation for these results is that when there is large variability (higher standard deviation) in the demand, the retailer can
benefit more from the flexibility of either ordering below the free shipping quantity or ordering big lot size to receive free
shipping, than in the case where demand is much less varied (smaller standard deviation). Hence the (s, t,S) heuristic pol-
icies perform better and are closer to the true optimal policies, and they outperform the (s, t) policies in which no free ship-
ping option is offered.

In addition, for smaller standard deviations, bigger percentage deviations indicate that the optimal policies may not
have same structures as the (s, t,S) policies. To explore the true structure and understand the complexity of the optimal
policies, we next compute the optimal policy for the case in which the standard deviation is very small, i.e. r = 1.

We present the policies in Fig. 2. Notice that the optimal ordering policy does not possess the same structure as the
(s, t,S) heuristic policy given small demand variability (small standard deviation). In fact, the optimal policy can be very



Table 1
Effectiveness of the (s, t,S) policy

Demand distribution p/(p + h) Q/E(D) K Avg. Dev. 1 Avg. Dev. 2

Normal l = 10, r = 2 0.80 [0,10] [1,5] 2.03 15.97
0.85 [0,10] [1,5] 2.19 15.87
0.90 [0,10] [1,5] 1.89 15.72
0.95 [0,10] [1,5] 1.67 16.05

Normal l = 10, r = 5 0.80 [0,10] [1,5] 0.01 9.77
0.85 [0,10] [1,5] 0.03 9.70
0.90 [0,10] [1,5] 0.00 9.66
0.95 [0,10] [1,5] 0.00 9.83

Normal l = 10, r = 10 0.80 [0,10] [1,5] 0.00 8.19
0.85 [0,10] [1,5] 0.00 8.07
0.90 [0,10] [1,5] 0.00 7.89
0.95 [0,10] [1,5] 0.00 8.27

Normal l = 20, r = 2 0.80 [0,10] [1,5] 3.82 17.23
0.85 [0,10] [1,5] 3.94 17.03
0.90 [0, 10] [1,5] 3.41 16.91
0.95 [0,10] [1,5] 3.04 18.26

Normal l = 20, r = 5 0.80 [0,10] [1,5] 0.01 15.86
0.85 [0,10] [1,5] 0.04 15.62
0.90 [0,10] [1,5] 0.01 15.48
0.95 [0,10] [1,5] 0.00 15.93

Normal l = 20, r = 10 0.80 [0,10] [1,5] 0.00 11.40
0.85 [0, 10] [1,5] 0.00 11.27
0.90 [0, 10] [1,5] 0.00 10.98
0.95 [0, 10] [1,5] 0.00 11.51

Normal l = 30, r = 2 0.80 [0,10] [1,5] 4.83 20.05
0.85 [0, 10] [1,5] 5.09 19.13
0.90 [0, 10] [1,5] 4.37 18.82
0.95 [0, 10] [1,5] 3.85 21.28

Normal l = 30, r = 5 0.80 [0,10] [1,5] 0.02 19.16
0.85 [0, 10] [1,5] 0.05 18.49
0.90 [0, 10] [1,5] 0.01 18.23
0.95 [0, 10] [1,5] 0.00 19.74

Normal l = 30, r = 10 0.80 [0,10] [1,5] 0.00 15.69
0.85 [0, 10] [1,5] 0.00 15.41
0.90 [0, 10] [1,5] 0.00 15.18
0.95 [0, 10] [1,5] 0.00 15.83

Normal distribution.
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complicated and hard to identify. Observe that the optimal policy has a ‘peak’ for the range x 2 {5, . . . , 10}, which corre-
sponds to the order quantity above Q, while the heuristic policy is much simpler and smoothes out the ‘peak’.

The (s, t,S) heuristic policies also perform very well when demand follows Poisson and Uniform distributions. Table 2
provides our computational results.

For Poisson demand distributions, we test three cases where k was assigned the values 10, 20, and 30. For Uniform dis-
tributions, we use Uniform [0, 20] and Uniform [0,40]. The results obtained herein are consistent with those of Normal
distributions: average percentage deviations between the (s, t,S) policies and the optimal policies are all very small, varying
from 0.00% to 0.92% for Poisson and 0.00% for Uniform distributions (Table 2, column 5); while the percentage deviations
between the (s, t) policies and the (s, t,S) policies vary from 13.25% to 19.57% for Poisson and from 9.11% to 10.35% for
Uniform distributions (column 6), under different levels of penalty cost ratio p/(p + h).

Comparing Tables 1 and 2, we observe that the (s, t,S) policies tend to perform slightly better under Uniform than under
Poisson and Normal distributions. Intuitively, this is also due to the reason that retailer benefits more from the free ship-
ping option given higher demand variability when demand follows Uniform distribution than Normal and Poisson distri-
butions, at same mean demand values. The (s, t,S) policies are therefore more robust.

All results show that the (s, t,S) policies are very accurate and close to the optimal policies under a variety of combina-
tions of the parameters under all three different demand distributions with varied mean demands and standard deviations.
Moreover, for the problem of free shipping option, (s, t,S) policies perform much better than the (s, t) policies that do not
consider the choice of free shipping.

To summarize the performance of the (s, t,S) policy, our numerical studies reveal that:

� In general, optimal policies of the inventory systems with free shipping option have quite complicated structures and
they are difficult to identify and implement into practice.
� The (s, t,S) policies are sufficiently accurate and have close-to-optimal performance under different demand distributions

with various combinations of parameters; and they outperform the (s, t) policies that are suitable for problems with min-
imum order quantity only.
� In all instances, as values of demand standard deviations increase, average percentage deviations between the (s, t,S) pol-

icies and the optimal policies decrease, implying that the heuristic tend to perform better when demand variability is larger.
6.2. Managerial insights

We next focus on providing managerial insights with regard to the impacts of the free shipping option, different levels of
free shipping quantity Q, and the fixed cost K on the average costs of the retailer. We use Normal demand distribution with
l = 10 unless otherwise mentioned.
Table 2
Effectiveness of the (s, t,S) policy

Demand distribution p/(p + h) Q/E(D) K Avg. Dev. 1 Avg. Dev. 2

Poisson k = 10 0.80 [0,10] [1,5] 0.81 13.42
0.85 [0,10] [1,5] 0.92 13.31
0.90 [0,10] [1,5] 0.74 13.25
0.95 [0,10] [1,5] 0.61 13.47

Poisson k = 20 0.80 [0,10] [1,5] 0.02 16.10
0.85 [0,10] [1,5] 0.05 15.79
0.90 [0,10] [1,5] 0.01 15.54
0.95 [0,10] [1,5] 0.00 16.22

Poisson k = 30 0.80 [0,10] [1,5] 0.00 18.88
0.85 [0,10] [1,5] 0.02 18.22
0.90 [0,10] [1,5] 0.00 17.97
0.95 [0,10] [1,5] 0.00 19.57

Uniform [0, . . . , 20] 0.80 [0,10] [1,5] 0.00 9.17
0.85 [0,10] [1,5] 0.00 9.13
0.90 [0,10] [1,5] 0.00 9.11
0.95 [0,10] [1,5] 0.00 9.21

Uniform [0, . . . , 40] 0.80 [0,10] [1,5] 0.00 10.27
0.85 [0,10] [1,5] 0.00 10.13
0.90 [0,10] [1,5] 0.00 9.98
0.95 [0,10] [1,5] 0.00 10.35

Poisson and Uniform distributions.
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We first analyze the impact of free shipping option and the fixed cost K on the effect of the (s, t,S) policies. The values of
K were allowed to vary from 1 to 5, incremented by 1. We compare three different types of inventory policies: (a) the opti-
mal policy with free shipping option; (b) the optimal policy without free shipping option; and (c) the optimal (s, t,S) policy
with free shipping option.

The percentage differences between the average costs of these policies are denoted by Gap 1 and Gap 2, respectively, as
follows (for simplicity, optimal policy with (without) free shipping is denoted as Optimal I (II)):
Table
The im

p/p(p +

0.80

0.85

0.90

0.95

Q = 10
Gap 1 ¼ 100� ðs; t; SÞ average costs�Optimal I average costs

Optimal I average costs
;

Gap 2 ¼ 100�Optimal II average costs�Optimal I average costs

Optimal I average costs
:

We present our findings in Table 3.
The results in Table 3 illustrate that the retailer will indeed benefit from the free shipping option provided by the sup-

plier. First, the retailer’s cost savings as a result of taking the advantage of the free shipping option can reach around 13%
in the event that the shipping cost K is not very large (see columns 6 and 7). Second, as K increases, average costs of both
the optimal policy with free shipping and the (s, t,S) heuristic policy increase. In fact, when K becomes larger the (s, t,S)
policy is closer to optimal, since both policies tend to converge to the optimal policy without free shipping which does not
change with K. Third, when the shipping cost K becomes very large, the retailer will be better off ordering as least as much
as Q to avoid the significant shipping cost. Finally, the results again confirm our previous findings that the heuristic policy’s
performance is close to that of the optimal policy.

Next, to further illustrate the impact of the shipping cost on the performance of the heuristic policies, we did a plot of
the average costs as a function of different levels of shipping cost K. Fig. 3 compares the average costs of the (s, t,S) policy
and those of the optimal policies with and without free shipping option at different values of K. The penalty cost ratio
p(p + h) was set to be 0.90, and r = 3.

Fig. 3 confirms our results in Table 3. Indeed, notice that average costs of the (s, t,S) policy and the optimal policy with
free shipping (Optimal I) increase as K increases and both policies converge to the optimal policy without free shipping
(Optimal II). We conclude with the following managerial insights from our analysis:

� The free shipping option does allow the retailer to reduce its inventory costs. For a given free shipping quantity Q, the
average costs under the (s, t,S) policy are significantly lower than those under the policies without free shipping option.
3
pact of free shipping option

h) K Optimal I (s, t,S) Optimal II Gap 1 Gap 2

1 4.51 4.60 5.05 2.00 11.97
2 4.72 4.78 5.05 1.27 6.99
3 4.89 4.94 5.05 1.02 3.27
4 4.98 5.05 5.05 1.41 1.41
5 5.04 5.05 5.05 0.20 0.20

1 4.94 5.11 5.56 3.44 12.55
2 5.17 5.28 5.56 2.13 7.54
3 5.36 5.43 5.56 1.31 3.73
4 5.48 5.54 5.56 1.09 1.46
5 5.56 5.56 5.56 0.00 0.00

1 5.60 5.75 6.29 2.68 12.32
2 5.86 5.93 6.29 1.19 7.34
3 6.03 6.10 6.29 1.16 4.31
4 6.14 6.23 6.29 1.47 2.44
5 6.24 6.29 6.29 0.80 0.80

1 6.50 6.72 7.35 3.38 13.08
2 6.78 6.91 7.35 1.92 8.41
3 6.99 7.09 7.35 1.43 5.15
4 7.15 7.23 7.35 1.12 2.80
5 7.27 7.35 7.35 1.10 1.10

, r = 3.
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� As the shipping cost K increases, the retailer’s average costs increase, and the cost savings diminish when K becomes
larger.
� When K is very large, the retailer will be better off ordering at least the free shipping quantity Q to receive free shipping

and therefore reduce the total inventory costs.
Lastly, we plot the long-run average costs as a function of Q/E(D) under different penalty cost ratios p/(p + h). The

average costs are normalized by the global minimum value of L(y) of the optimal policy. Fig. 4 depicts our results for the
case of r = 3 and K = 3. The insight obtained herein is consistent with our intuition:
� For a given fixed cost K, the average costs of the retailer increase as the free shipping quantity Q increases, and higher

free shipping quantity requirement results in higher average costs for the retailer.
7. Summary and conclusion

In this paper, we considered the problem of a stochastic inventory system with free shipping option and a fixed cost K.
The problem arises in situations where a supplier offers free shipping with linear ordering cost if the order size of the retailer
is at least as much as the free shipping quantity; an additional fixed shipping cost K is applied otherwise. We formulated the
problem using stochastic dynamic programming and provided the optimal policy for the single-period inventory system.
For the multi-period case, we introduced a new class of simple but effective heuristic policy, the (s, t,S) policy.

By conducting extensive numerical studies, we illustrated that: (a) the new (s, t,S) heuristic policy has a robust perfor-
mance and it provides close-to-optimal solutions for a wide range of system parameters and different demand distributions;
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(b) for inventory systems with free shipping, the heuristic policy outperforms the (s, t) policy that only considers minimum
order quantity; (c) the heuristic policy tends to have better performance when the demand variability is larger. Further-
more, we discussed and provided important managerial insights. Our analysis demonstrated that the free shipping option
can indeed improve retailer’s inventory management and generate considerable cost savings. As the shipping cost K

increases, the retailer’s inventory costs increase (cost savings diminish). And finally, higher values of free shipping quantity
Q lead to higher average costs for the retailer. Throughout the paper, we assumed that p > c to exclude the cases in which it
is never optimal for the retailer to carry inventory before demand is realized.

There are several research questions that can stem from this current paper. We have not found the optimal policies for
the single-item, multi-period inventory system. One interesting extension worth pursuing is to investigate and obtain some
structural properties of the true optimal inventory policies for multi-period systems with free shipping option. Another
future research effort may consider the free shipping problem in multi-item, multi-period stochastic inventory systems
where the retailer replenishes multiple products from the same supplier, who offers free shipping if the total order size
of all products is no less than the free shipping quantity (FSQ) and requires the retailer to pay an additional fixed cost
if the total order size is below the FSQ. Questions may include: What are the structures of the optimal policy for the
multi-item inventory systems? Are there any effective heuristics that can provide good approximation for the problem?
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