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IPA Derivatives for Make-to-Stock Production-Inventory
Systems With Lost Sales

Yao Zhao and Benjamin Melamed

Abstract—This note applies the stochastic fluid model (SFM) paradigm
to a class of single-stage, single-product make-to-stock (MTS) produc-
tion-inventory systems with stochastic demand and random production
capacity, where the finished-goods inventory is controlled by a contin-
uous-time base-stock policy and unsatisfied demand is lost. This note
derives formulas for infinitesimal perturbation analysis (IPA) derivatives
of the sample-path time averages of the inventory level and lost sales with
respect to the base-stock level and a parameter of the production rate
process. These formulas are comprehensive in that they are exhibited for
any initial inventory state, and include right and left derivatives (when
they differ). The formulas are obtained via sample path analysis under
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very mild regularity assumptions, and are inherently nonparametric in
the sense that no specific probability law need be postulated. It is further
shown that all IPA derivatives under study are unbiased and fast to com-
pute, thereby providing the theoretical basis for online adaptive control of
MTS production-inventory systems.

Index Terms—Infinitesimal perturbation analysis (IPA), lost sales,
make-to-stock (MTS), production-inventory systems, stochastic fluid
models (SFMs).

I. INTRODUCTION

This note derives infinitesimal perturbation analysis (IPA) deriva-
tives of selected random variables for a class of make-to-stock (MTS)
systems in stochastic fluid model (SFM) setting, where the traditional
discrete arrival, service, and departure stochastic processes are replaced
by corresponding stochastic fluid-flow rate processes. We henceforth
refer to this approach as IPA-over-SFM. The IPA derivatives provide
sensitivity information on system metrics with respect to control pa-
rameters of interest, and as such can serve as the theoretical underpin-
nings for online control algorithms. Comprehensive discussions of IPA
derivatives and their applications can be found in Fu and Hu [3] and
Cassandras and Lafortune [1].

The IPA-over-SFM approach has been successfully applied to the-
oretical studies of various queuing and production-inventory systems;
see, e.g., [2], [6], [4], and [7]. These studies constrain the system to
start from a prescribed initial inventory state, and only consider cases
where the left and right IPA derivatives coincide. In contrast, Zhao and
Melamed [8] considered any initial inventory state for MTS systems
with backorders and derived sided IPA derivative formulas as needed.
The goal of this note is to derive IPA derivatives for MTS systems with
lost sales, and to show them to be unbiased. First, we derive IPA deriva-
tives for the time averages of inventory level and lost sales with respect
to the base-stock level for all initial inventory states, including sided
derivatives when they differ. We are only aware of one note [6] ad-
dressing IPA-over-SFM queues with finite buffers, which can be used
to model MTS systems with lost sales, though it constrains the initial
condition to an empty buffer. Second, we derive IPA derivatives for
the aforementioned metrics with respect to a production rate param-
eter, including sided derivatives when they differ. We point out that the
assumptions in [6] preclude differing left and right IPA derivatives. As
will become evident in the sequel, MTS systems with lost sales are also
analytically more challenging than MTS systems with backorders, be-
cause the inventory state of the former has an extra boundary, a fact
that results in more elaborate formulas.

The computation of IPA derivatives for all initial conditions is mo-
tivated by two reasons. The first reason is to enable potential appli-
cations of IPA derivatives to online control of MTS systems driven
by nonstationary processes among others. The intent is to adjust the
system parameters over time according to the changing statistics of
the underlying processes, but not necessarily to optimize it. Clearly,
IPA-based online control applications mandate the computation of IPA
derivatives for all initial states, as well as all sided derivatives when
they differ, since a control action can change the system parameters at
any state (which is then considered as the new initial state). It makes
little sense to wait for the system to return to certain selected inventory
states as this could suspend control actions over extended periods of
time. The second reason is that the transient IPA derivatives computed
here are exact and unbiased, whereas their asymptotic counterparts may
not provide adequate approximations. Furthermore, in order to com-
pute asymptotic IPA derivatives, we still need to obtain their transient
counterparts before sending time to infinity.
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The rest of this note is organized as follows: Section II presents the
MTS model. Sections III and IV derive IPA derivative formulas and
prove their unbiasedness. Section V concludes the note. We will use
the following notational conventions. Let the indicator function of set
A be 1A and x+ = maxfx; 0g. A function f(x) is said to be locally
differentiable at x if it is differentiable in a neighborhood of x; it is said
to be locally independent of x if it is constant in a neighborhood of x.

II. MTS MODEL WITH LOST SALES

Consider a single-stage, single-product MTS system, consisting of a
production facility and an inventory facility. The two facilities are cou-
pled: The latter sends orders to the former, while the former produces
stock to replenish the latter. The production facility is comprised of a
queue that houses a production server, preceded by an infinite buffer
that holds incoming production orders. We assume that the production
facility has an unlimited supply of raw material, so it never starves.
The inventory facility satisfies incoming demands on a first-come–first-
serve (FCFS) basis, and is controlled by a continuous-time base-stock
policy with a base-stock level S > 0 (the case S = 0 corresponds
to the just-in-time policy as a simple special case). Demands arrive at
the inventory facility and are satisfied from inventory on hand (if avail-
able). Otherwise, when an inventory shortage is encountered, the in-
coming demand is satisfied by the amount of inventory on hand, and
any shortage of inventory becomes a lost sale.

The MTS system can operate in one of the following two modes.
In the normal operational mode, the inventory level does not exceed
S. The production facility strives to replenish the inventory facility to
its base-stock level, but no higher. In the overage operational mode, the
inventory level exceeds S (for example, this could result from a control
action that lowered S below the current inventory level). Production is
then temporarily suspended until the inventory level reaches or crosses
S from above, at which point normal operational mode resumes.

The MTS system with lost sales can be modeled as an SFM, where
I(t) is the (fluid) volume of inventory on-hand at time t, X(t) is the
(fluid) volume of outstanding orders at time t, �(t) represents the rate
of incoming demands at time t, and �(t) represents the production rate
at time t. Finally, �(t) is the (fluid) loss rate of sales at time t. Let [0; T ]
be a finite time interval; for example, T may designate the time period
separating applications of control actions.

The notion of sample path events pertains to a property of a time
point along a sample path (not to be confused with the ordinary no-
tion of events as aggregates of sample paths); the distinction can be
discerned by context. Similarly to [6], we define two types of sample
path events: An exogenous event occurs either whenever a jump takes
place in the sample path of f�(t)g or f�(t)g, or when the time horizon
T is reached. An endogenous event occurs whenever a time interval is
inaugurated, in which X(t) = 0 or X(t) = S. Throughout this note,
we make the following mild regularity assumptions (cf. [6]).

Assumption 1:
1) The demand rate process f�(t)g and the production rate process
f�(t)g have right-continuous sample paths that are piecewise-
constant with probability 1 (w.p.1.).

2) Each of the processes f�(t)g and f�(t)g has a finite number of
discontinuities in any finite time interval w.p.1, and the time points
at which the discontinuities occur are independent of the param-
eters of interest.

3) No multiple sample path events occur simultaneously w.p.1.
In overage operational mode, the system satisfies the relations

(d=dt+)I(t) = ��(t); �(t) = 0, and X(t) = 0. In normal opera-
tional mode, the system satisfies the conservation relation

X(t) + I(t) = S: (2.1)

The lost-sales rate process is given by �(t) = [�(t) �
�(t)] 1fI(t)=0;�(t)>�(t)g; t � 0. The outstanding orders
process is governed by the sided stochastic differential equation:
(d=dt+)X(t) = 0 if X(t) = 0 and �(t) � �(t) or X(t) = S and
�(t) � �(t); otherwise, (d=dt+)X(t) = �(t)� �(t).

We consider the following performance random variables or simply
metrics: the inventory time average LI(T ) = (1=T )

T

0
I(t)dt and

the lost-sales time average L�(T ) = (1=T )
T

0
�(t)dt. The control

parameters of interest are the base-stock level at the inventory facility
and a scaling parameter of the production rate at the production facility.
Let � 2 � denote a generic parameter of interest with a close and
bounded domain �. We write S(�); �(t; �); LI(T; �); L�(T; �), and
so on to indicate the dependence of a performance random variable on
its parameter of interest. Our objective is to derive formulas for the IPA
derivatives (d=d�)LI(T; �) and (d=d�)L�(T; �) in SFM setting, using
sample path analysis, and to show them to be unbiased.

Finally, we make the following assumption regarding the initial state.
Assumption 2: The initial inventory level does not depend on �, i.e.,

I(0; �) = I(0);8� 2 �.

III. IPA DERIVATIVES WITH RESPECT TO THE BASE-STOCK LEVEL

This section derives IPA derivatives (including sided ones) for
the inventory time average, LI(T; �) and the lost-sales time average
L�(T; �), both with respect to the base-stock level S. It will exhibit
the requisite formulas for any initial inventory state.

Assumption 3:
1) S(�) = �, where � 2 �.
2) The processes f�(t)g and f�(t)g are independent of the param-

eter �.
3) For each � 2 �, the sided derivatives of LI(T; �) and L�(T; �)

exist w.p.1.
Let (Qj(�); Rj(�)); j = 1; . . . ; J(�), be the ordered extremal

subintervals of [0;1), such that I(t; �) < S for all t 2 (Qj ; Rj). That
is, the endpoints Qj(�) and Rj(�) are obtained via inf and sup func-
tions, respectively. By convention, if any of these endpoints does not
exist, then it is set to 1. Furthermore, let Zj(�) 2 (Qj(�); Rj(�)) be
the first time point in this interval at which I(t; �) = 0, provided such
a point exists; otherwise, let Zj(�) = Rj(�). By [8, Observation 3],
Q1(�) < R1(�) < Q2(�) < R2(�) < . . . < QJ(�)(�) < RJ(�)(�).

We consider three initial states: I(0) < S(�); I(0) > S(�),
and I(0) = S(�). The last state cannot be excluded because it may
happen in applications where inventory levels are discrete. On the event
fI(0) < S(�)g fI(0) > S(�)g, we will make use of the hitting time
TS(�) = minft 2 [0;1] : I(t; �) = S(�)g, if it exists; otherwise,
define TS(�) = 1. On the event fI(0) = S(�)g, we make use of
the hitting times T�(�) and T�(�). On the event fQ1(�) > 0g, define
T�(�) = minft 2 [0; Q1(�)) : �(t) > �(t)g, if it exists; on the event
fQ1(�) = 0g [fQ1(�) > 0g f�(t) = �(t); t 2 [0; Q1(�))g]
define T�(�) = R1(�), if R1(�) exists; otherwise, define T�(�) =1.
Finally, define T� = minft 2 [0; T ] : �(t) > 0g, if it exists;
otherwise, define T� = 1. In words, T�(�) is a hitting time of
fI(t; �)g, which corresponds to the first time that the inventory level
changes in any perturbed process fI(t; � + ��)g, while T� plays an
analogous role, but for a perturbed process fI(t; � ���)g. Note that
T� is independent of �. We will also make use of horizon-dependent
random indices, given by JS(T; �) = maxfj � 1 : Rj(�) � Tg, if
it exists, and JS(T; �) = 0, otherwise. These constitute restrictions of
J(�) to finite time horizons [0; T ].

Theorem 1: W.p.1, the IPA derivatives of the inventory time average
with respect to the base-stock level are given for all T > 0 and � 2 �
as follows:

1) On the event fI(0) < S(�)g
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d

d�
LI(T; �) =

1

T

J (T;�)

j=1

[minfZj+1(�); Tg �Rj(�)]:

2) On the event fI(0) > S(�)g fTS(�) < Q1(�)g
d

d�
LI(T; �) =

1

T
f1fT (�)<Tg[minfZ1(�); Tg � TS(�)]

+

J (T;�)

j=1

[minfZj+1(�); Tg �Rj(�)]g:

3) On the event fI(0) > S(�)g fTS(�) = Q1(�)g
d

d�
LI(T; �) =

1

T
f1fT (�)<Tg

�(TS(�))

�(TS(�))
[minfZ1(�); Tg � TS(�)]

+

J (T;�)

j=1

[minfZj+1(�); Tg �Rj(�)]g:

4) On the event fI(0) = S(�)g fT�(�) = R1(�)g

d

d�+
LI(T; �) =

1

T

J (T;�)

j=1

[minfZj+1(�); Tg �Rj(�)] :

5) On the event fI(0) = S(�)g fT�(�) < R1(�)g
d

d�+
LI(T; �) =

1

T
f1fT (�)<Tg[minfZ1(�); Tg � T�(�)]

+

J (T;�)

j=1

[minfZj+1(�); Tg �Rj(�)]g:

6) On the event fI(0) = S(�)g fT� < Q1(�)g
d

d��
LI(T; �) =

1

T
f1fT <Tg[minfZ1(�); Tg � T�]

+

J (T;�)

j=1

[minfZj+1(�); Tg �Rj(�)]g:

7) On the event fI(0) = S(�)g fT� = Q1(�)g

d

d��
LI(T; �) =

1

T
f1fT <Tg

�(T�)

�(T�)
[minfZ1(�); Tg � T�]

+

J (T;�)

j=1

[minfZj+1(�); Tg �Rj(�)]g:

Proof: First note that in normal operational mode, an outstanding
order (a lost sale, respectively) of the MTS system is equivalent to a
parcel of workload (a lost volume, respectively) in the production fa-
cility’s queue (cf. [6] which considers the initial state X(0; �) = 0,
i.e., I(0; �) = S(�)).

To prove part 1), we write LI(T; �) =

(1=T )[
minfT (�);Tg

0
I(t; �)dt +

minfQ ;Tg

minfT (�);Tg
I(t; �)dt +

T

minfQ ;Tg
I(t; �)dt]. By standard arguments (see [2], [6], and [8]),

Q2 is locally independent of �, and in the time interval [Q2; T ],
the system always starts with full inventory in a neighborhood of
�. Taking the derivative of the previous equation and noting that
I(t; �) is independent of � on ft < TS(�)g, I(t; �) = S(�) on
fTS(�) < t � Q2g, and that the terms associated with (d=d�)TS
vanish, part 2) follows from (2.1) and [6, Proposition 3.2].

Part 2) follows from the proof of part 1) if we replace Q2 with Q1.
To prove part 3), we assume, without loss of generality,

T > R1(�) � Z1(�) > TS(�) = Q1(�). Thus, LI(T; �) =

(1=T )[
T (�)

0
I(t; �)dt +

Z (�)

T (�)
I(t; �)dt +

R (�)

Z (�)
I(t; �)dt +

T

R (�)
I(t; �)dt]. Clearly, I(t; �) does not depend on � on f0 � t <

TS(�)g. By standard arguments (see [2], [6], and [8]), I(t; �) does not

depend on � on fZ1(�) < t < R1(�)g. On fTS(�) < t < Z1(�)g,
I(t; �) = S(�)+

t

T (�)
[�(� )��(�)]d� . Differentiation with respect

to � yields (d=d�)I(t; �) = 1� [�(TS(�))��(TS(�))] (d=d�)TS(�).
Moreover, T (�)

0
�(�) d� = I(0)�S(�) implies (by differentiation)

d

d�
TS(�) =

�1

�(TS(�))
: (3.2)

Hence, (d=d�)I(t; �) = �(TS(�))=�(TS(�)), and, after some al-
gebra, part 3) is obtained.

To prove part 4), we write LI(T; �) =

1=T [
minfT (�);Tg

0
I(t; �)dt +

T

minfT (�);Tg
I(t; �)dt].

By definition of T�(�); I(t; �) = I(t; � + ��) on f0 � t � T�(�)g
for sufficiently small �� > 0. Moreover, Q2 is locally independent of
�, and I(t; �) = S(�) on fT�(�) < t � Q2g. Part 4) now holds by
the proof of part 1). Part 5) holds by a similar proof if we replace Q2

by Q1. Finally, for parts 6) and 7), consider ����. The system starts
in overage operational mode because I(0) = S(�) > S(� ���). By
definition, T� is the limiting time point at which fI(t; � ���)g first
hits S(� � ��) from above as �� ! 0; so T� is equivalent to the
TS(�) of parts 2) and 3). Replacing TS(�) by T�, and using arguments
similar to those in the proof of parts 2) and 3) proves parts 6) and 7).

We next derive the IPA derivatives for L�(T; �). For any time
interval [a; b], let N[a;b](�) be the number of intervals of the form
[Qj(�); Rj(�)], such that Zj(�) < Rj(�) (i.e., lost sales actually
occur) and Zj(�) 2 [a; b].

Theorem 2: W.p.1, the IPA derivatives of the lost-sales time average
with respect to the base-stock level are given for all T > 0 and � 2 �
as follows.

1) On the event A(�) = fI(0) < S(�)g and B(�) = fI(0) >
S(�)g fTS(�) < Q1(�)g

d

d�
L�(T; �) = �

N(T (�);T ](�)

T
:

2) On the event C(�) = fI(0) > S(�)g fTS(�) = Q1(�)g

d

d�
L�(T; �) = �

1

T
1fZ (�)<R (�);Z (�)<Tg

�(TS(�))

�(TS(�))

+ N(R (�);T ](�) :

3) On the event D(�) = fI(0) = S(�)g

d

d�+
L�(T; �) = �

N(T (�);T ](�)

T
:

4) On the event E(�) = fI(0) = S(�)g fT� < Q1(�)g

d

d��
L�(T; �) = �

N(T ;T ](�)

T
:

5) On the event F (�) = fI(0) = S(�)g fT� = Q1(�)g

d

d��
L�(T; �) = �

1

T
1fZ (�)<R (�);Z (�)<Tg

�(T�)

�(T�)

+ N(R (�);T ](�) :

Proof: For part 1) and the event A(�), we write L�(T; �) =

(1=T )[
minfT (�);Tg

0
�(t; �)dt +

minfQ ;Tg

minfT (�);Tg
�(t; �)dt +

T

minfQ ;Tg
�(t; �)dt]. By the proof of part 1) in Theorem 1, Q2

is locally independent of �, and in the time interval [Q2; T ], the system
starts with full inventory in a neighborhood of �. Differentiating
the previous equation and noting that �(t; �) is independent of � on
f0 � t < TS(�)g and �(t; �) = 0 on fTS(�) � t � Q2g, part 1)
follows from [6, Proposition 3.1]. The same proof applies to the event
B(�) of part 1), provided Q2 is replaced by Q1.
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For part 2), we assume without loss of generality R1(�) < T ,
and write L�(T; �) = (1=T )[

R (�)

0
�(t; �)dt +

Q

R (�)
�(t; �)dt +

T

Q
�(t; �)dt]. If Z1(�) = R1(�), then there are no lost sales in

(Q1(�);R1(�)), whereas if Z1(�) < R1(�), then some lost sales
occurred in (Q1(�);R1(�)). Let [Uk(�); Vk(�)]; k = 1; . . . ; K(�),
be extremal subintervals of (Q1(�);R1(�)) over which I(t; �) = 0.
By standard arguments (see [6]), Uk(�) is locally differentiable in �,
Vk(�) is locally independent of �, and

d

d�

R (�)

0

�(t; �)dt =

K(�)

k=1

d

d�

V

U (�)

[�(t)� �(t)]dt = �[�(U1(�))� �(U1(�))]
d

d�
U1(�):

(3.3)

Because TS(�) = Q1(�) by assumption, U (�)

T (�)
(�(t) � �(t))dt =

S(�). Differentiating the above yields [�(U1(�)) �
�(U1(�))](d=d�)U1(�)� [�(TS(�))� �(TS(�))](d=d�)TS(�) = 1.
By (3.2) and (3.3), (d=d�) R (�)

0
�(t; �)dt = ��(TS(�))=�(TS(�)).

Since �(t; �) = 0 on fR1(�) � t � Q2g, part 2) holds by [6,
Proposition 3.1].

For part 3, let T�(�) < T for simplicity, and write L�(T; �) =

(1=T )[
T (�)

0
�(t; �)dt +

T

T (�)
�(t; �)dt]. By definition of

T�(�); I(t; �) = I(t; � + ��) for t 2 [0; T�(�)) for sufficiently
small �� > 0. Furthermore, �(t; �) = 0 on fT�(�) � t � Q2g,
if T�(�) = R1(�); similarly, �(t; �) = 0 on fT�(�) � t � Q1g,
if T�(�) < R1(�). Thus, (d=d�+) T (�)

0
�(t; �)dt = 0 and part 3)

holds by [6, Proposition 3.1].
For parts 4) and 5), consider � � ��. Because I(0) = S(�) >

S(����), the system starts in overage operational mode. Parts 4) and
5) follow by the proof of event B(�) of part 1), because Theorem 1
shows that in these cases, T� plays a role analogous to TS(�).

Theorem 3: Under Assumptions 1–3, the sided IPA derivatives with
respect to the base-stock level (d=d��)LI(T; �) and (d=d��)L�(T; �)
are unbiased for all T > 0 and � 2 �.

Proof: Part 3) of Assumption 3 ensures that for all T > 0, [5,
Assumption C4 of Lemma A2, p. 70] holds for both LI(T; �) and
L�(T; �). Because �(TS(�))=�(TS(�)) < 1 and (�(T�)=�(T�)) <
1 in Theorems 1 and 2, it follows that 0 � (d=d��)LI(T; �) �
1 by Theorem 1. Furthermore, by Theorem 2, (d=d��)L�(T; �) �
1 +N[0;T ](�)=T , whereE[N[0;T ](�)] is finite becauseN[0;T ](�) is fi-
nite w.p.1 by part 2) of Assumption 1. Since the sample performance
functions are continuous and piecewise differentiable, the one-sided
derivatives exist for every �. All IPA derivatives are bounded. Hence,
[5, Assumption C3 of Lemma A2] is in force, which completes the
proof.

IV. IPA DERIVATIVES WITH RESPECT TO A PRODUCTION

RATE PARAMETER

This section derives sided IPA derivatives for the inventory time av-
erage LI(T; �) and the lost-sales time average L�(T; �), both with re-
spect to a production rate parameter � of f�(t; �)g.

Assumption 4:
1) (d=d�)�(t; �) = 1, where t 2 [0; T ] and � 2 �.
2) The process f�(t)g and the base-stock level S are independent of

�.
3) For each � 2 �, the sided derivatives of LI(T; �) and L�(T; �)

exist w.p.1.
We point out that unlike [6], [4], and [7], Assumption 4 admits the

possibility that sided IPA derivatives do not coincide. Indeed, this could

happen on events of the form fI(t; �) = Sg f�(t) = �(t; �)g
and fI(t; �) = 0g f�(t) = �(t; �)g. These are generally not rare
events, and in practice, their probabilities may well not vanish, because
I(t; �) = S or I(t; �) = 0 could hold for an extended period of time,
and by part 1) of Assumption 1, f�(t)g and f�(t; �)g have sample
paths that are piecewise-constant w.p.1.

In this section, we may assume without loss of generality that
0 � I(0) � S, since the production facility suspends replenishment
in overage operational mode, so that the value of � has no effect
on the state of the system until it enters normal operational mode.
Define (U+

m(�); V
+
m (�));m = 1; . . . ;M(�), to be the ordered ex-

tremal subintervals of [0;1) such that for all t 2 (U+
m; V

+
m ), either

I(t; �) = S holds or both I(t; �) = 0 and �(t) > �(t; �) hold.
Define further (U�n (�); V

�
n (�)); n = 1; . . . ; N(�), to be the ordered

extremal subintervals of [0;1) such that for all t 2 (U�n ; V
�
n ),

either I(t; �) = 0 holds or both I(t; �) = S and �(t) < �(t; �)
hold. By convention, if any of the aforementioned endpoints does
not exist, then it is set to 1. For notational convenience, define
V +
0 (�) = V �0 (�) = 0. By the continuity of fI(t; �)g in t and part

3) of Assumption 1, U+
1 (�) < V +

1 (�) < U+
2 (�) < V +

2 (�) < � � � <
U+
M(�)(�) < V +

M(�)(�) and U�1 (�) < V �1 (�) < U�2 (�) < V �2 (�) <

� � � < U�
N(�)(�) < V �

N(�)(�).
We will need the following horizon-dependent random in-

dices. The restriction of M(�) to a finite time horizon [0; T ] is
MI(T; �) = maxfm � 1 : V +

m (�) � Tg, if it exists, and zero,
otherwise. The restriction of N(�) to a finite time horizon [0; T ] is
NI(T; �) = maxfn � 1 : V �n (�) � Tg, if it exists, and zero,
otherwise.

Theorem 4: W.p.1, the IPA derivatives of the inventory time average
with respect to the production rate parameter are given for all T > 0
and � 2 � as follows:

d

d�+
LI(T; �) =

1

2T

M (T;�)

m=0

[minfU+
m+1(�); Tg � V +

m (�)]2 (4.4)

d

d��
LI(T; �) =

1

2T

N (T;�)

n=0

[minfU�n+1(�); Tg � V �n (�)]2: (4.5)

Proof: We only prove (4.4) since the proof of (4.5)
is analogous. By part 3) of Assumption 4 and Leibniz’s
rule, (d=d��)LI(T; �) = (1=T )(d=d��)

T

0
I(t; �)dt =

(1=T )
T

0
(d=d��)I(t; �)dt. We next compute (d=d�+)I(t; �).

By definition of (U+
m(�); V

+
m (�)); one has I(t; �) = I(t; � + ��)

on the events fU+
m(�) < t < V +

m (�)g;m = 1; . . . ;M(�),
for sufficiently small ��. On the events fV +

m (�) < t <
U+
m+1(�)g;m = 0; 1; . . . ;M(�) � 1; one has I(t; �) =

I(V +
m (�); �) +

t

V (�)
[�(�; �) � �(�)] d� . By standard arguments

(see [2], [6], and [8]), V +
m (�) and, therefore, I(V +

m (�); �) are each
locally independent of � in a right neighborhood of �. Consequently,
(d=d�+)I(t; �) = �[�(V +

m (�); �) � �(V +
m (�))] (d=d�+)V +

m (�) +
t

V (�)
d� = t � V +

m (�). A modicum of algebra completes the
proof.

To derive IPA derivatives for L�(T; �), we will need the following
horizon-dependent random indices: M�(T; �) = maxfm �
1 : U+

m(�) � Tg, if it exists, and zero, otherwise, as well
as N�(T; �) = maxfn � 1 : U�n (�) � Tg, if it ex-
ists, and zero, otherwise. Let �(T; �) be the set of all indices
m 2 f1; 2; . . . ;M�(T; �)g such that I(t; �) = 0 and �(t) > �(t; �)
on the event fU+

m(�) < t < V +
m (�)g. In a similar vein, let 	(T; �) be

the set of all indices n 2 f1; 2; . . . ; N�(T; �)g such that I(t; �) = 0
on the event fU�n (�) < t < V �n (�)g.
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Theorem 5: W.p.1, the IPA derivatives of the lost-sales time average
with respect to the production rate parameter are given for all T > 0
and � 2 � as follows:

d

d�+
L�(T; �) = �

1

T
m2�(T;�)

[minfV +
m (�); Tg � V +

m�1(�)] (4.6)

d

d��
L�(T; �) = �

1

T
n2	(T;�)

[minfV �
n (�); Tg � V �

n�1(�)]: (4.7)

Furthermore, letting �st denote stochastic ordering, the sided IPA
derivatives satisfy

d

d�+
L�(T; �) �st

d

d��
L�(T; �); T > 0; � 2 �: (4.8)

Stochastic equality holds above, provided fI(t; �) = Sg � f�(t) <
�(t; �)g holds for all t 2 [0; T ] and fI(t; �) = 0g � f�(t) > �(t; �)g
holds for all t 2 [0; T ].

Proof: We only prove (4.6) since the proof of (4.7) is analogous.
By standard arguments (see [2], [6], and [8]), the set �(T; �) is locally
independent of � in a right neighborhood of �, and U+

m(�) is locally
differentiable with respect to � in a right neighborhood of �. Thus

d

d�+
L�(T; �) =

1

T
m2�(T;�)

d

d�+

minfV (�);Tg

U (�)

�(t; �)dt: (4.9)

By part 1) of Assumption 4, for each m 2 �(T; �)

d

d�+

minfV (�);Tg

U (�)

�(t; �)dt = �[�(U+
m(�))��(U

+
m(�); �)]

�
d

d�+
U+
m(�)�

minfV (�);Tg

U (�)

dt:

(4.10)

To compute the term associated with (d=d�+)U+
m(�), consider

U (�)

V (�)
[�(t) � �(t; �)] dt for m 2 �(T; �). A modicum

of algebra shows that
U (�)

V (�)
[�(t) � �(t; �)] dt is locally

independent of �. Taking the right derivative of this integral
yields �[�(V +

m�1(�)) � �(V +
m�1(�); �)](d=d�

+)V +
m�1(�) +

[�(U+
m(�)) � �(U+

m(�); �)](d=d�
+)U+

m(�) �
U (�)

V (�)
dt = 0,

because the first term vanishes, resulting in �[�(U+
m(�)) �

�(U+
m(�); �)](d=d�

+)U+
m(�) = �

U (�)

V (�)
dt. Finally, substi-

tuting the previous equation into (4.8) yields (d=d�+)
minfV (�);Tg

U (�)

�(t; �)dt = �
minfV (�);Tg

V (�)
dt = �[minfV +

m (�); Tg�V +
m�1(�)].

Equation (4.6) now follows by substituting the previous equation into
(4.10).

Finally, inequality (4.8) follows directly from (4.6) and (4.7) and the
definition of V +

m (�) and V �
n (�) by standard arguments.

Theorem 6: Under Assumptions 1 and 4, the IPA derivatives
with respect to the production rate parameter, (d=d��)LI(T; �) and
(d=d��)L�(T; �), are unbiased for all T > 0 and � 2 �.

Proof: Part 3) of Assumption 4 ensures that for all T > 0, [5,
Assumption C4 of Lemma A2] holds for both LI(T; �) and L�(T; �).
Moreover, Theorems 4 and 5 imply that 0 � (d=d��)LI(T; �) � T=2
and j(d=d��)L�(T; �)j � 1. Since the one-sided derivatives exist for
every � and all IPA derivatives are bounded, [5, Assumption C3 of
Lemma A2] is in force, which completes the proof.

V. DISCUSSION

Reference [8] and the current note can provide a theoretical basis
for new online control algorithms of production-inventory systems, in-
cluding those where the underlying stochastic processes (i.e., demand
and production capacity processes) may be subject to nonstationary
probability laws. One direction of future research is the extension of the
current results to more general supply chains with multiple products,
such as assemble-to-order systems (e.g., such as those implemented by
Dell Computer Corporation, Round Rock, TX), where demand patterns
fluctuate considerably over time.
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Minimal Communication for Essential Transitions
in a Distributed Discrete-Event System

Feng Lin, Karen Rudie, and Stéphane Lafortune

Abstract—In a distributed discrete-event system with decentralized in-
formation, agents at the various sites (e.g., controllers or diagnosers) may
be required to communicate in order to correctly perform some prescribed
tasks. Bandwidth, power, or security constraints motivate the design of
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