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Abstract A single-stage Make-to-Stock (MTS) production-inventory system con-
sists of a production facility coupled to an inventory facility, and is subject to a
policy that aims to maintain a prescribed inventory level (called base stock) by
modulating production capacity. This paper considers a class of single-stage, single-
product MTS systems with backorders, driven by random demand and production
capacity, and subject to a continuous-review base-stock policy. A model from this
class is formulated as a stochastic fluid model (SFM), where all flows are described
by stochastic rate processes with piecewise- constant sample paths, subject to very
mild regularity assumptions that merely preclude accumulation points of jumps with
probability 1. Other than that, the MTS model in SFM setting is nonparametric in
that it assumes no specific form for the underlying probability law, and as such is
quite general. The paper proceeds to derive formulas for the (stochastic) IPA
(Infinitesimal Perturbation Analysis) derivatives of the sample-path time averages
of the inventory level and backorders level with respect to the base-stock level and a
parameter of the production rate. These formulas are comprehensive in that they
are exhibited for any initial condition of the system, and include right and left
derivatives (when they do not coincide). The derivatives derived are then shown to
be unbiased and their formulas are seen to be amenable to fast computation. The
generality of the model and comprehensiveness of the IPA derivative formulas hold
out the promise of gradient-based applications. More specifically, since the base-
stock level and production rate are the key control parameters of MTS systems, the
results provide the theoretical underpinnings for optimizing the design of MTS
systems and for devising prospective on-line adaptive control algorithms that em-
ploy IPA derivatives. The paper concludes with a discussion of those issues.
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1 Introduction

Production-inventory systems consist of production facilities that feed replenish-
ment product to inventory facilities, driven by random demand and possibly random
production processes, as well as feedback information from inventory to production
facilities. In simple MTS systems, a stage is comprised of a single-product reple-
nishment flow between a pair of coupled production-inventory facilities, such that
production is modulated by inventory state information. An important instance of
production-inventory systems is the Make-to-Stock (MTS) class, where the inventory
facility sends its state information to the production facility as a control signal,
which modulates production with the aim of maintaining the inventory level at a
prescribed level, called base stock level. Such systems can admit backorders when
stock is depleted, or suffer lost sales. This paper is concerned with MTS systems with
backorders (see Section 2), while a forthcoming paper will treat MTS systems with
lost sales.

Economic considerations in supply chains call for effective control of inventory
levels and production rates, in order to optimize some prescribed performance
metric. This motivates on-line algorithms that can adaptively control such systems
over time with the objective of minimizing the inventory on-hand without com-
promising customer service metrics. To this end, we propose to use IPA (Infinitesimal
Perturbation Analysis) derivatives of selected random variables [for comprehensive
discussions of IPA derivatives and their applications, refer to Glasserman (1991),
Ho and Cao (1991) and Fu (1994a, 1994b)]. IPA derivatives provide sensitivity
information on system metrics with respect to control parameters of interest, and
as such can serve as the theoretical underpinnings for on-line control algorithms.
Specifically, let L(6) be a random variable, parameterized by a generic real-valued
parameter 6 chosen from a closed and bounded set ©. The IPA derivative of L(6)
with respect to 6 is the random variable %L(G), provided that it exists almost surely.
An IPA derivative is said to be unbiased, if the expectation and differentiation
operators commute, namely, E[4L(0)] =4 E[L(0)]; otherwise, it is said to be
biased. Sufficient conditions for unbiased IPA derivatives are given in the following
result.

Facr 1 (see Rubinstein and Shapiro (1993), Lemma A2, p. 70)
An IPA derivative 4 L(6) is unbiased, if

(a) For each 0 € ©, the IPA derivatives -4 L(6) exist w.p.1 (with probability 1).
(b) W.p.1, L(0) is Lipschitz continuous in O, and the (random) Lipschitz constant
has a finite first moment.

For IPA-based applications to be general and efficacious, it is necessary that the
requisite IPA derivative formulas satisfy the following requirements:

1. For usability, they should be comprehensive in the sense that they are valid for
any initial condition of the system. In particular, if a left-derivative does not
coincide with its right-derivative counterpart, then both should be exhibited.
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2. For statistical accuracy, they should be unbiased.

3. For generality, they should be nonparametric in the sense that they are solely
computable from the sample path observed without making any distributional
assumptions on the underlying probability law.

4. To enable on-line applications, they should be fast to compute.

Most papers on production-inventory systems (and MTS systems in particular)
postulate specific probability laws that govern the underlying stochastic processes
(e.g., Poisson demand arrivals and exponential service times). For simple systems,
such as the one-stage MTS variety, closed-form formulas of key performance
metrics (e.g., statistics of inventory levels and lost sales or backorders) have been
derived as functions of control parameters. For example, Zipkin (1986) and
Karmarkar (1987) obtain the optimal control of these systems with respect to the
batch sizes and re-order points by standard optimization techniques. For more
complex MTS systems, such as the multi-stage serial variety, closed-form formulas
are not available. A sample path analysis is carried out by Buzacott et al. (1991) for
a 2-stage production system which is governed by the continuous-time base-stock
policy. Diffusion models and deterministic fluid models have been proposed in order
to mitigate the analytical and computational complexity of performance evaluation
and optimal control. For example, Wein (1992) used a diffusion process to model a
multi-product, single-server MTS system, while Veatch (2002) discussed diffusion
and fluid-flow models of serial MTS systems. Note, however, that diffusion models
require a heavy traffic condition in order to be valid approximations (Wein, 1992).
In a similar vein, while deterministic fluid-flow models provide valuable insights into
the control rules of such systems, deterministic modeling may well result in
substantial numerical errors (Veatch, 2002).

Simulation has been widely used to study the performances of complex produc-
tion-inventory systems under uncertainty. Glasserman and Tayur (1995) considered a
class of production-inventory systems under the so-called periodic-review, modified
base-stock policy, and estimated its performance metrics and IPA derivatives using
simulation. While periodic-review policies evaluate system performance at discrete
review times, discrete-event simulation, in contrast, can track system performance
continuously, but this can be overly time consuming for large-scale systems, due to the
large number of events that need to be processed (e.g., arrivals and service com-
pletions). All in all, most papers on stochastic production-inventory systems postulate
a specific underlying probability law, and focus on off-line control and optimization
algorithms.

Recent work has sought to address these shortcomings in the context of fluid-
flow queueing systems, and especially, the stochastic fluid model (SFM) setting,
where transactions carry fluid workload, random discrete arrivals become random
arrival rates and random discrete services become random service rates. SFM-like
settings represent an alternative (continuous or fluid-flow) queueing paradigm,
which differs from the traditional (discrete) queueing paradigm in the way workload
is transported in the system.' Both paradigms are set in a network of nodes, each of
which houses a server and a buffer, where network sources and sinks are viewed as

! For simplicity we address only open networks in this discussion.
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exogenous nodes, and all others as endogenous nodes. Transactions representing
parcels of workload arrive at the network from some source, traverse the network
according to some itinerary, and then depart the network at some sink. The two
queueing paradigms differ, however, in the way workload moves in the system. In
the discrete queueing paradigm, transaction workload moves “abruptly” among
nodes following a service time, while in the continuous queueing paradigm, trans-
action workload moves “gradually” (i.e., flows like fluid) for the duration of its service
time.

A heuristic modeling rationale underlying SFM systems is the assumption that
individual transactions carry miniscule workload as compared to the entire
transaction flow, so the effect of individual transactions is infinitesimal and akin to
“molecules” in a fluid flow. Furthermore, in many cases, a transaction workload
does move gradually from one node to another, rather than abruptly (e.g., a
conveyor belt carrying bulk material, loading and unloading a truck, train, etc.) In
fact, discrete queueing systems can be abstracted as “limiting cases” of continuous
queueing systems, where the flow rate is zero when a transaction is still, but at the
moment of motion the flow rate becomes momentarily infinite; in other words, the
flow rate is akin to a Dirac function. Pursuing this line of reasoning, the “Dirac pulses”
of flow rates in a discrete queueing system can be approximated by high flow rates of
short duration in a continuous queueing system. Whichever reasoning is used, the
modeler can often choose to model a queueing system using either paradigm on equal
footing. Finally, we point out that ceteris paribus, SFM systems enjoy an important
advantage over their discrete counterparts: IPA derivatives in SFM setting are
unbiased, while their counterparts in discrete queueing systems are by and large
biased (Heidelberger et al., 1988). Thus, the local shape of sample paths in the
fluid-flow paradigm confers technical advantages on them. IPA derivatives,
derived in SFM setting, can provide important information and insights for their
discrete counterparts, by applying derivative formulas obtained in SFM setting to
queueing systems that have been traditionally viewed as belonging to the discrete
queueing paradigm. While preliminary unpublished work by one of the authors
suggests that this approach is viable, more work is needed to establish its broad
applicability.

Motivated by the considerations above, Wardi et al. (2002) derived IPA deriva-
tives in SFM setting; we henceforth refer to this approach as IPA-over-SFM. The
paper considered two performance metrics: loss volume and buffer-workload time
average; each of these metrics was differentiated with respect to buffer size, a
parameter of the arrival rate process and a parameter of the service rate process.
The paper showed the IPA derivatives to be unbiased, easily computable and non-
parametric. Consequently, these derivatives can be computed in simulations, or in
the field, and the values can have potential applications to on-line control and
stochastic optimization. Paschalidis et al. (2004) treated multi-stage MTS produc-
tion-inventory systems with backorders in SFM setting. Assuming that inventory at
each stage is controlled by a continuous-time base-stock policy, the paper computed
the right IPA derivatives of the time averaged inventory level and service level with
respect to base-stock levels, and used them to determine optimal base-stock levels
at each stage. Zhao and Melamed (2004) applied the IPA-over-SFM approach to a
class of single-product, single-stage MTS systems with backorders. Using a different
proof methodology from that of Paschalidis et al. (2004), this paper derived the
IPA formulas of the time averaged inventory level and backorder with respect to
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the base-stock level, as well as a parameter of the production rate process. The
goal of this paper is to derive IPA derivatives for Make-to-Stock systems with
backorders, and to show them to be unbiased. The key contributions of this paper
are two-fold.

The first contribution is the derivation of IPA derivative formulas with respect to
the base-stock level for all initial inventory states, including those that lie above the
base-stock level. In contrast, the above-cited references consider only a subset of
initial inventory states; for example, Zhao and Melamed (2004) restricts such
systems to start with a base-stock level of inventory, while Paschalidis et al. (2004)
considers initial inventory states that lie only below the base-stock level. In fact,
we show in this paper that transient IPA derivatives depend strongly on the initial
inventory state, and in some cases, only sided IPA derivatives exist. The impor-
tance of our contribution stems from potential applications of IPA derivatives to
on-line control of MTS systems. Clearly, on-line control applications mandate the
computation of IPA derivatives for all initial inventory states, as well as all sided
derivatives, since a control action can change system parameters at a variety of
system states (which are then considered as new initial states). Moreover, it ob-
viously makes little or no sense to wait for the system to return to selected inventory
states for which IPA derivatives are known, as this could suspend control actions
over extended periods of time. For example, consider the situation where an IPA-
based control action sets the base-stock level to coincide with the current inventory
level (this could happen in applications where inventory levels are discrete), in
which case this paper shows that the sided derivatives exist but are not equal.
These sided derivatives would be needed in due time to decide on the next
control action, where a base-stock level lowering action would call for left IPA
derivatives, while a base-stock level raising action would call for right IPA
derivatives; note that the inventory level just after each control action is consid-
ered to be the new initial inventory state for the purpose of computing the new IPA
derivatives. We point out that Zhao and Melamed (2004) also considers IPA deriv-
atives from an initial inventory state that coincides with the base-stock level, but the
initial inventory state and base-stock level are required there to vary together, which
simplifies the analysis, but does not admit on-line control applications.

The second contribution of this paper is the derivation of IPA derivative formulas
with respect to a production-rate parameter, which models the production capacity that
replenishes the inventory system. Here, our results generalize Wardi et al. (2002) and
Zhao and Melamed (2004), which only consider the case where the left and right IPA
derivatives coincide. In contrast, this paper drops this restriction and derives all sided
IPA derivative formulas, thereby extending the applicability of IPA-based on-line
control.

The computation of the general IPA derivatives in this paper requires major
extensions of the results in the open literature, culminating in more elaborate
formulas. We show that long-run IPA derivatives with respect to the base-stock
level parameter are simpler, and in fact, coincide with published results for a subset
of initial inventory states (e.g., Paschalidis et al. (2004), Zhao and Melamed (2004)).
However, as noted above, IPA-based on-line control applications cannot rely on
long-run IPA derivatives, but must generally utilize their transient counterparts. We
mention that while this paper focuses on the IPA derivatives in MTS systems, our
ultimate goal is to use derivative information for on-line control and optimization of
supply chains, which will be the subject of further research.
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Throughout the paper, we use the following notational conventions and
terminology. The indicator function of set A is denoted by 14 and x* = max{x, 0},
whereas f(x+) and f(x—) denote the right and left limits of f at x and % f(x)
and % f(x) denote, respectively, the right and left derivatives of f at x. A function
f(x) is said to be locally differentiable at x if it is differentiable in a neighborhood
of x; it is said to be locally independent of x if it is constant in a neighborhood
of x.

The rest of the paper is organized as follows. Section 2 presents the production-
inventory model under study. Section 3 provides variational bounds for system
metrics. Section 4 derives IPA derivative formulas and shows them to be unbiased.
Finally, Section 5 discusses the results, their significance and their use in prospective
design and control applications.

2 The Make-to-Stock Model

Consider the traditional single-stage, single-product MTS system, consisting of a
production facility and an inventory facility. The two facilities interact: the latter
sends back orders to the former, while the former produces stock to replenish the
latter. The production facility is comprised of a queue that houses a production
server (a single machine, a group of machines or a production line), preceded by an
infinite buffer that holds incoming production orders. We assume that the
production facility has an unlimited supply of raw material, so it never starves.
The inventory facility satisfies incoming demands on a first come first serve (FCFS)
basis, and is controlled by a continuous-time base-stock policy with some base-stock
level S > 0. More specifically, the inventory and production facilities are coupled,
and have two operational modes as follows:

Normal mode. While the inventory level does not exceed S, the inventory facility
places the orders of incoming demands as discrete production jobs in the pro-
duction facility’s buffer according to some operational rule (to be detailed below).
The production facility fills these outstanding orders and replenishes the in-
ventory facility back to its base-stock level, but no higher. We also refer to this
operational mode as normal operation, because the system strives to reach an
inventory level S, and in so doing, it maintains an inventory level not exceeding S.

Overage mode. While the inventory level exceeds S (this could happen, for exam-
ple, as a result of a control action that lowered S), the production facility buffer is
empty, so production is temporarily suspended until the inventory level reaches or
crosses S from above, at which point normal operation is resumed. We also refer
to this operational mode as overage operation.

The demand process consists of an interarrival-time process of demands and
their random magnitude. Demands arrive at the inventory facility and are satisfied
from inventory on hand (if available). Otherwise, when an inventory shortage is
encountered, the behavior of the MTS queue is governed by the backorder rule as
follows: Any shortage of inventory is backordered from the production facility, and
the demand waits in a FCFS buffer at the inventory facility until the production
facility replenishes the inventory facility with the shortage amount. Thus, the
system’s overall actions aim to move the inventory level to the base-stock level, S.
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2.1 Mapping MTS Systems to SFM Versions

We next proceed to map the traditional discrete MTS system with backorders into an
SFM version, as depicted in Fig. 1. Level-related stochastic processes are mapped
into fluid versions of their traditional counterparts in a natural way, as follows:

Inventory level. The traditional jump process of the level of inventory on hand at
the inventory facility is mapped to a fluid-level counterpart, {I(¢)}, where () is
the (fluid) volume of inventory on-hand at time ¢.

Backorders level. The traditional jump process of the level of backorders at the
inventory facility is mapped to a fluid-level counterpart, {B(t)}, where B(t) is
the (fluid) volume of backorders at time .

Outstanding orders. The traditional jump process of the level of outstanding orders

in the buffer of the production facility is mapped to a fluid-level counterpart,
{X(t)}, where X(z) is the (fluid) volume of outstanding orders at time .

Traffic-related stochastic processes in Fig. 1 are mapped into fluid versions of
their traditional counterparts, as follows:

Arrival rate. The traditional arrival process of discrete demands at the inventory
facility is mapped to a fluid-flow stochastic process, {«(t)}, where a(t) is the
rate of incoming demands at time .

Production rate. The traditional service (production) process of discrete product
at the production facility is mapped to a fluid-flow stochastic process, {u(t)},
where 1(t) is the production rate at time .

Outstanding order rate. The traditional arrival process of signals for placing
discrete outstanding orders at the production facility is mapped to a fluid-
flow stochastic process, {\(f)}, where A(z) is the rate of incoming outstanding
orders at time .

Replenishment rate. The traditional replenishment process of discrete replenished
product from the production facility to the inventory facility is mapped to a
fluid-flow stochastic process, {p(t)}, where p(z) is the replenishment rate of
product at time ¢.

Inventory Facility with

Outstanding Orders Base-Stock Level
o, S
A ( t) l-n.".'....
Inventory
Outstanding ) LIe(\;)eI
id | Orders Level Szli\;)er Replenishment Demands
X(?) p(t) Backorders ()
Level
Production Facility with B()
unlimited Raw Material

Fig. 1 The Make-to-Stock production-inventory system with backorders
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We now proceed to exhibit the formal definitions of all fluid-model components
of the MTS system with backorders.

During overage operation, the inventory process is governed by the one-side
stochastic differential equation

d

F](t) = —a(t), (2.1)
and

B(t)=0, X(t)=0 (2.2)

Mt)=0, p(t)=0. (2.3)

During normal operation, the model satisfies the conservation relation,

X(@)+1(t)— B(t) =S, (2.4)

where
I()=[S-X(1)]", (2.5)
B(1) = [X(1) - 8", (2.6)

and the outstanding orders process is governed by the sided stochastic differential
equation,

d it X(t)=0 and at) < u(r),

0,
%X(f) = {a([) —u(t), otherwise, =7

The arrival-rate process of outstanding orders is given by

[0, it I(r) > S
Al = {a(t), it 1(1) <. 28)

and the replenishment-rate process is given by

A wu(t), if X(t) >0
Pl = {min{u(t),)\(t)}, it X(6) = 0.

2.2 Performance Metrics and Parameters

Let [0, 7] be a given finite time interval, during which system performances are
evaluated before a control action regarding the inventory policy and/or production
rate is taken. One should not confuse T with the review period of a periodic-review
inventory policy.

In this paper, we will be interested in the following random variables, to be
henceforth referred to as performance metrics.
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Inventory time average. The time average of fluid volume of inventory on-hand
over the interval [0, T], given by

Li(T) = & / ! (1) dt. (2.10)
0

T
Backorder time average. The time average of fluid volume of backorders over the
interval [0, 7], given by

1

T
Lu(T) = /0 B(r) dt. 2.11)

Observe that the metrics L;(7T) and Lg(T) are random variables for each 7.
Let 6 € © denote a generic parameter of interest with a closed and bounded
domain ©. We write S(6), w(t,0), L;(T,0),Lg(T,6) and so on to explicitly display
the dependence of a performance random variable on its parameter of interest. Our
objective is to derive formulas for the IPA derivatives % L;(T,6) and & Lg(T, ) in
the SFM setting, using sample path analysis, and to show them to be unbiased.
The parameters of interest in this section are listed below:

Base-stock level. The base-stock level of the inventory facility,
SO)=6, 6co0. (2.12)
Production rate parameter. A parameter of the production rate process, such that
90 wt,0)=1, tel0,T], 60¢cO, (2.13)

interpreted as an additive scaling parameter of the production rate.

2.3 Assumptions

The notion of sample path events pertains to a property of a time point along a
sample path (not to be confused with the ordinary notion of events as aggregates of
sample paths); the distinction can be discerned by context. Similarly to Wardi et al.
(2002), we define two types of sample path events:

Exogenous events. An exogenous event occurs whenever a jump occurs in the

sample path of {«a(r)} or {u(r)}.
Endogenous events. An endogenous event occurs whenever a time interval is
inaugurated, in which X (¢) =0 or X(¢) = S.

Throughout this paper, we assume the following mild regularity conditions [cf.
Wardi et al. (2002)].

ASSUMPTION 1

(a) The demand rate process, {a(t)}, and the production rate process, {u(t)}, have
right-continuous sample paths that are piecewise-constant w.p.1.
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(b) Each of the processes, {a(t)} and {u(t)}, has a finite number of discontinuities
in any finite time interval w.p.1, and the time points at which the discontinuities
occur are independent of the parameters of interest.

(¢) No multiple events occur simultaneously w.p.1.

While parts (a) and (c) above are mild regularity assumptions, part (b) merits
additional motivation as follows. It makes sense to model the demand arrival-rate
process, {«(f)}, as exogenous to the system, and as such we assume it to be inde-
pendent of any parameter of interest, and this is true in particular of its discontinuity
points. The production-rate process, {(f)}, may depend on a scaling parameter, 6 (see
equation (2.13)), but its discontinuity points are assumed independent of . Note that
such discontinuities model a change in production capacity which do not depend on
scaling of the production rate.

The following observations follow from Assumption 1.

OSERVATION 1

1. W.p.1, there exists a finite integer N > 0 and a sequence of (random) time points
0=Ty<Ty<-<Tny<Tny1 =T, such that the process {a(t)— u(t)} is
constant over each interval (T,,T,11), n=0,---,N, and each time point T,,
1 <n <N, is a jump point of the process.

2. Theprocess {a(t) — u(t)} is constant over each time interval (Ty,, Tyy1), n =0, -+, N.

Proof: To prove the first observation, note that the finiteness of N follows from
part (b) of Assumption 1, while the strict inequalities are a consequence of part (c)
of Assumption 1. The second observation follows directly from the first one. [ ]

Finally, we shall be interested in pairs of systems, the original system (indexed by
f) and a perturbed system (indexed by 6 + Af), both starting at the same initial
conditions. To simplify the notation in the sequel, we shall also make the following
assumption, without any loss of practical generality.

AssuMPTION 2 The initial inventory level and initial backorder level do not depend on
0, namely, 1(0,0) = 1(0) and B(0,0) = B(0), for all 6 € ©.

3 Variational Bounds

In this section, we derive variational bounds for various parameterized stochastic
processes and performance metrics in the MTS model with backorders. These
results will be used in subsequent sections to simplify the derivation of IPA
derivatives and to establish their unbiasedness.

OSERVATION 2 For an MTS system with the backorder rule, the stochastic differential

equation (2.7) governing the outstanding order process {X (t)} in normal operation is a
special case of the SFM queue in Wardi and Melamed (2001), where the buffer has
unlimited capacity.
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Proof: Follows from the fact that we can identify the demand arrival rate
process and production rate process, respectively, with the inflow rate process
and service rate process in an infinite-capacity SFM queue from Wardi and
Melamed (2001). [ |

For notational convenience, we define two auxiliary processes. The extended
inventory process, {W(t)}, is defined by

W(t):](t)—B(t):{ Io), it I(1)>0 (3.1)

—B(t), ifI(r)=0.

Thus, W () determines both /(¢) and B(¢) (and vice versa). The extended outstanding
orders process, {Y (t)}, is defined by

Y() = S—1(t), ¥f I(t) > S (overage opera.tlon) (32)

X(1), if I(f) <S (normal operation).

Observe that Y(¢) is negative during overage operation and non-negative during
normal operation, and its time derivative satisfies

a(t), if Y(r)<0
=<0, if Y(#)=0 and «(r) < u(t) (3.3)
a(t) — p(t), otherwise.

Furthermore, equation (2.4) implies the conservation relation
WH)+Y@) =S, t>0, (3.4)

valid for each operational mode (overage and normal). The variational bounds will
be shown to hold with respect to control parameters of interest at each time point,
starting from an arbitrary W(0).

In the remainder of the paper the tilde symbol will always indicate a realization
of a random variable or a stochastic process. Accordingly, let {¥(z,6,y)} denote a
sample path realization of {Y(z,6)} that starts at initial condition y, so ¥(0,6,y) = y.
Furthermore, when we write {¥(z,61,y1)} and {¥(z,6,,y2)}, we mean two sample
path realizations for which the following conditions hold.

1. {¥(t,61,y1)} and {¥(t,0,,y2)} are driven by the same realization, {a(t)}, of the
process {a(t)}.

2. If the process {u(f)} does not depend on 6, then {¥(z,01,y1)} and {¥(z,62,y2)}
are driven by the same realization, {fi(¢)}, of the process {u(¢)}. Otherwise,
{¥(t,01,y1)} and {¥(t, 02, y2)} are driven by corresponding realizations, {7i(t,6;)}
and {%i(t,62)} of the process {u(t)}, related by fi(t,61) — fi(t,62) = 61 — 6,, in
accordance with equation (2.13).

Intuitively, the two realizations have different IPA parameters and start from dif-
ferent initial states, Y(0), but are otherwise driven by the same “randomness” in
arrivals and production. In a similar vein, let {%(¢,6,y)} and {b(z,6,y)} denote the
realizations of the processes {I(z,6)} and {B(z,0)}, respectively, both associated
with {¥(z,0,y)}.
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For each realization {J(, 0, y)} of an MTS with the backorder rule, equation (3.3)
induces a partition of the interval [0, 77,

R(67y) :{R1(9,y),Rz(e,y),R3(9,y)}, (35)

where each region, Ri(f,y), 1 <k <3, is defined by the condition in the
corresponding k-th line of equation (3.3), namely,

Ri(0,y) = {re0,T]: y(1,0,y) <0},
Ra(0,y) = {re[0,T]: y(1,0,y) =0 and &(t) <ji(1)},
Rs(0,y) = {te[0,T]: [¥(t,0,y) =0 and a(r) > fu(t)] or ¥(z,6,y) > 0}.

3.1 Variational Bounds With Respect to the Base-Stock Level

In this section, the IPA parameter of interest is S(6) = 6 for § € O, so the initial state
of the extended outstanding orders process is Y (0,6) = S(0) — W(0).

Lemma 1 For an MTS system under the backorder rule, let y1 < y,. Then for each
0 €0,

0<3(t,0,y2) = 3(t,0,y1) <ya—y1, tel0,T]. (3.6)

Proof: We show that for each 6, the difference realization, {7(¢,6, y2)— ¥(¢,0,y1)}, is
non-increasing in ¢ from the initial value of y, — y; > 0, without changing sign.
We first prove the lefthand inequality of (3.6). By assumption,

y(oveayz)_y(ovevyl):y2_y120' (37)

Observe that if y(t*,60,y,) = y(¢*,0,y1) for some time point ¢*, then y(¢,6,y,) =
¥(t,0,y1) for all £ > ¢*. To see that, note that equation (3.3) implies that once the
realizations synchronize, they remain synchronized thereafter. Finally, since the
difference realization is continuous, it cannot change signs.

We next prove the righthand inequality of (3.6) by noting that in view of equation
(3.7), it suffices to show that the derivative of the difference realization satisfies
A [5(,6,y2) —¥(t,0,y1)] <0 for all £ > 0. To this end, we examine the behavior of
4 5(t,0,y1) and -&5(z,6,y,) in the three regions of the partition (3.5). Informally,
the proof computes —-[(z,6, y>) — ¥(¢,0, y1)] for all pairs of regions in the partitions
associated with each initial state, such that y(¢,6, y;) is in one region and ¥(z,0, y;) is
in the other. More formally, the computation covers ¢ in all intersections of the form
Ri(0,y1) () Rj(0,y2), 1 <i,j <3. However, the following two observations reduce
substantially the number of region-pair cases to be checked. First, there is no need to
check for pairs of regions with the same subscript, i = j, since in their intersection
4 [5(1,6,y2) —¥(t,0,y1)] = 0, trivially. Second, in view of the lefthand side of (3.6), it
suffices to consider only region pairs in which ¥(z,6, y1) < ¥(t,0,y,), since obviously,
%W(l,e,yz) - y(t797y1)] =0 when y(t797y2) = y(ta&yl)'
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Consequently, we need only check the following list of cases.

Case 1: 1€ Ry(0,y1) N\ R2(0,y2). In this case, & [(t,0,y2) — ¥(1,0,y1)] = —a(t) < 0.

Case 2: 1 € Ry(0,y1)(\R3(0,y>). In this case, & [§(z,0,y2) — ¥(t,0,y1)] = —fi(t) <O0.

Case 3: 1 € Ry(0,y1) (\R3(0,y>). In this case, - [§(1, 0, y2) — ¥(t,0,y1)] = &(r) — fi(r)

< 0, where the inequality follows from the definition of the intersection of
Rz(@,)q) and R3(9,y2).

The proof is complete. |

We next derive a variational bound for an MTS system under the backorder rule,
starting from an arbitrary value, wy, of the initial extended inventory, W(0).

ProrosiTioN 1 For an MTS system with the backorder rule, let y1 = S(01) — wo and
2 = 8(62) — wo, where 61,0, € ©, and wy is arbitrary. Then max{|y(t,61,y1)—
y(t,02,y2)[:t € [0, T]} < |61 — 6a].
Proof: Without loss of generality, assume S(6;) = 6; < 6, = S(6,), from which it
follows that 0 <y, — y; = 6, — 61. Applying Lemma 1 to ¥(¢,01,y1) and y(t, 61, y2)
yields

0 < ¥(t,01,y2) = ¥(t,01,31) <0, — 01 €0, T]. (3.8)

The proposition follows immediately from (3.8), by realizing that the realization
{J(t,61,y2)} is identical to {y(t,0,,y2)}, since they start with the same initial state,
and their dynamics are independent of # by equation (3.3). |

CoroLLARY 1 For an MTS system with the backorder rule, let y1 = S(01) — wo and
y2 = 8(62) — wo, for any wy and 6,60, € ©. Then,

[7(t,01,y1) = Ut,02,y2)] <201 = 02, t€[0,T] (3.9)
b(t,01,y1) — b(t,02,y2)| <264 — 6], €0, T). (3.10)
Proof: Equations (3.1) and (3.4) and Proposition 1 imply that
|7, 61, y1) = 70t 602, y2)| = [[S(61) = F(2,61,y1)] " = [S(02) = F(1,62,2)] T <2161 — 6.

A similar proof applies to the backorder process. |

3.2 Variational Bounds With Respect to the Production Rate Parameter

In this section, the IPA parameter of interest is a parameter, 6, of the production
rate process, {u(t,0)}, satisfying equation (2.13).
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ProrosiTiON 2 Let 61,0, € ©, and assume that Y (0,601) = Y(0,0,). Then,
max{|Y(t,6,) — Y(t,0,)|: t €[0,T]} < T101 — 6.

Proof: In view of the fact that {Y(¢,6,)} and {Y(t,6,)} coincide during overage
operation, it suffices to consider the case Y (0,6;) = Y(0,6;) > 0. The proposition
follows immediately from Proposition 3.2 of Wardi and Melamed (2001), because
the proof there is independent of the initial state. [ |

CoRroOLLARY 2 For any 01,0, € ©,

[1(t,01) —1(t,6)| < T |01 — 6], te€][0,T]
and

|B(t,601) — B(t,0,)| < T6, — 62|, te]0,T].

Proof: Follows from equations (3.1) and (3.4) and Proposition 2 by a proof
similar to that of Corollary 1. ]

4 TPA Derivatives

We are now in a position to derive IPA derivatives for various parameterized
stochastic processes and performance metrics in the MTS model.

Let (Q;(),Rj(0)),j =1,...,J(#) be the ordered extremal subintervals of [0, c0),
such that Y(z,6) > 0 for all t € (Q}, R)); that is, the endpoints, Q;(¢) and R;(6), are
obtained via inf and sup functions, respectively. By convention, if any of these
endpoints does not exist, then it is set to co.

OBSERVATION 3

01(0) < Ri(0) < Q2(0) < Ra(0) < ... < Qyp)(0) < Ryp(6), w.p.1. (4.1)
Proof: The strict inequalities will follow in equation (4.1) if we show that the
equalities Q;(0) = R;(#) and R;(#) = Qj;1(#) are impossible. The first equality is

ruled out because the intervals (Q;(f), R;(#)) are extremal by definition. The second
equality is ruled out by part (c) of Assumption 1. ]

4.1 TPA Derivatives with Respect to the Base-Stock Level

In this section we derive IPA derivatives for the performance metrics L;(7,6) and
Lg(T,0) with respect to the base-stock level, § = S(#), from any initial inventory
state. The approach is to first derive IPA derivatives for the inventory process,
{1(z,0)}, and backorder process, { B(z,6)}, and then use the results to derive the IPA
derivatives of the requisite performance metrics.

ASSUMPTION 3

(a) S(0) =0, where 6 € O.
(b) The processes {«(t)} and {u(t)} are independent of the parameter 0.
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The following lemma identifies the time points after which the dependence of
{Y(t,0)} on the parameter 6 ceases.

Lemma 2 For every j=1,...,J(0), the process {Y(t,0) : t > R;(0)} is locally inde-
pendent of 0, and consequently, <Y (t,6) =0 on the event {t > R;(6)}.

Proof: It suffices to prove the lemma for j =1 only, but as the proof remains
unchanged, we prove it for any j. We first show that R;(6) is locally differentiable
with respect to 6 for each j=1,...,J(6). To this end, note that R;(¢) is not locally
differentiable only when the following two simultaneous sample path events occur
at time R;(0): the first is a jump in either of {«(f)} or {u(f)} at R;(¢), and the second
corresponds to /(R;(6),6) = S(0) (equivalently, Y (R;(6),0) = 0). However, part (c)
of Assumption 1 rules out such simultaneous sample path events.

We next prove the lemma on the event {R;(¢) <t < Q;.1(6)}. Since R;(0) <
Qj+1(8) by Observation 3, it follows that Q;1(6) is a jump point of {a(f) — (1)},
such that a(Qy+1(6)-) < p(Qy+1(6)—) while a(Qy41(6)) > u(Qys1(6)). Consequently,
for each j > 1, Qj;1(0) is locally independent of § and Y (¢,6) is locally independent
of 0 on the event {R;(#) <t < Q;41(0)} and vanishes there.

It remains to prove the lemma on the event {t > Q;;1(¢)}. But this follows from
the fact that Y(Qj;1(6),0) is locally independent of # as shown above, and its
derivative values in equation (3.3) involve only «(f) and pu(f), which are independent
of 6. The proof is complete. |

In the next two lemmas we make use of the hitting time, 75(#), defined by

min {t € [0,00) : I(t,0) = S(0)}, if the minimum exists

0, otherwise. (4.2)

Ts(0) = {

Lemma 3 Consider an MTS system with the backorder rule on the event {W(0) <
S(0)} (that is, the system starts in normal operation with backorders or partial
inventory). Then, for any t > 0 and 0 € ©,

(a) On the event A(0) = {W(0) < S(0)}({t < Ts(0)},
d d
@I(t, 0) = %B(I, 0) = 0.
(b) On the event B(0) = {W(0) < S(0)}{t > Ts(0)} N {I(t,6) > 0},
d d
%I(t7 0) =1, %B(t, 6) = 0.
(¢c) On the event C(0) = {W(0) < S(@)}{t> Ts(0)}{B(t,6) >0},

d d
El(r,@) =0, EB(t, 0) = —1.

Proof: By Observation 3,
0=0100) < Ts(0) = Ri1(0) < O2(0) on {W(0) < S(9)}, (4.3)
and this holds for all cases of this lemma.
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To prove part (a), note that by equations (3.1) and (3.3), ’“;53’9) = a(t) — u(t) on

A(0). 1t follows that

Y(1,0) = Y(0,0) + /0 [a(r) — p(r)]dr on A(0).

Substituting the above into equation (3.4) implies that

ot

W(t,6)=S(0)—Y(t,6) =W(0)— /0 [a(r) — p(r)] dr

is independent of # on A(f). It follows from equation (3.1) that I(¢,6) = W(¢)" and
B(t,0) = [-W(t)]* are also independent of 6 on A(6), from which part (a) follows.
To prove parts (b) and (c), we apply Lemma 2 to 7s(¢) = R1(6) and conclude that

%Y(z, 6) =0on {W(0) < SO)} {t> Ts(6)}. (4.4)

Next, equation (3.4) implies that on B(6) one has I(¢,0) = S(0) — Y (¢,0) and B(¢,0) =0,
while on C () one has I(¢,0) = 0 and B(t,0) = Y (¢,0) — S(6). Parts (b) and (c) follow by
differentiating these relations with respect to 6 and substituting equation (4.4). [ |

Lemma 4 Consider an MTS system with the backorder rule on the event {W(0) >
S(0)} (that is, the system starts in overage operation). Then, for any t > 0 and 0 € ©,

(a) On the event A(9) = {W(0) > S(0)} N{t < Ts(6)},
d d
(b) On either of the events B1(0) = {W(0) > S(8)} ({Ts(0) < Q1(6)} N{t > Ts(0)}
Rggt zg > 8{ or  By(0) ={W(0) > S(0)} N{Ts(0) = Q1 ()} (¢ > Ri(0)}
t,0) > 0y,

d d
gl =1 - B(t.6)=0.

(c) On either of the events Ci(0) ={W(0)> SO} {Ts(0) < 0:1(6)} {t>

Ts(0)y N {B(t,0) >0} or  Ca(0) = {W(0) > S(0)} ({Ts(0) = Q1(0)} N{r >
Ri(6)} N{B(,0) > 0},

d d
G1t0) =0, B(t,6) = 1.
(d) Ontheevent D(6) = {W(0) > SO} {Ts(®) = 01(0)} {0O:1(0) <t < R ()}
{I(z,60) > 0},
d _M@(0) 4 _
@' = aei@)y @0 ="
(¢) On the event E(0) = {W(0) > S(0)} N{Ts(0) = 01(0)} ({O:(0) <t < Ry()} N
{B(t,0) > 0},
d _ d _ 1(Q1(9))
@I(t,e) =0, deB(t,e) = T w00
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Proof: To prove part (a), note that by equations (2.2) and (3.1), W(z,0) = I(z,0)
on A(6). It follows from equation (2.1) that %W(r, 0) = —a(t) on A(6). Therefore,

W(t,0) = W(0) — /0 a(r) dr

is independent of § on A(6). From equation (3.1) it follows that I(¢,8) = W(¢)" and
B(t,0) = [-W(t)]" are also independent of § on A(6), from which part (a) follows.
To prove part (b) and (c) on the event By () J Ci(6), note that by Observation 3,

Ts(0) < Q1(0) < Ri(6)  on Bi(6) JCi(6). (4.5)

Clearly, Ts(0) is locally differentiable with respect to 6. By a proof similar to that of
Lemma 2, we conclude that Y (¢, 0) is locally independent of 6 on the event {W(0) >
S(0)}N{Ts(0) < t}. Consequently, parts (b) and (c) on each of the events B;(6) and
C1(9) follow from equation (4.5) by the proof of parts (b) and (c) in Lemma 3.

To prove part (b) and (c) on the event B;(0) |J C»2(), note that by Observation 3,

Ts(@) = Q](@) < Ry (9) < Q2(0) on Bz(@) UCQ(@) (46)

Applying Lemma 2 to Ry (#) yields that Y(¢, ) is locally independent of 6 on the event
{W(0) > S(0)} N{R1(#) < t}. Parts (b) and (c) on each of the events B,(#) and C,(6)
follow from equation (4.6) by the proof of parts (b) and (c) in Lemma 3.

To prove (d) and (e), note first that

01(0)
/0 a(r) dr = W(0) — S(8) = W(0) — 6,

on {W(0) > S0)}([{Ts(6) = Q:(6)}.
Differentiating the above with respect to 6 yields after some manipulation,
L0 = on (W(0) > SO (Ts0) = Qi(0)). (47)
a(01(9))
We next show that both Q;(0) and R;(6) depend on ¢ on {W(0)>SO)}N{Ts(0) =
Q1(0)}. To this end, we write Y(t,0)= 0.0 [a(T) = u(7)]dT on the event
D(9) | E(6), and then differentiate it with respect to 6. It follows that

4 oo d o _ (Q0) — p(©1(6))
Y00 = () = W0 500 =R TGRS

on D(0)| JE(®),

where the second equality is obtained by substituting equation (4.7), and noting the
inequalities a(Q1(0)) > u(Q1(0)) > 0 on the event {W(0) > S(0)} N{01(0) = Ts(0)}.
Finally, equation (3.4) implies that on D(#) one has I(t,0) = S(9) — Y(z,6) and
B(t,0) = 0, while on E(0) one has I(z,0) = 0 and B(¢,60) = Y(t,6) — S(0). Parts (d) and
(e) now follow by differentiating these relations with respect to # and substituting into
equation (4.8.) [ |
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On the event {S(¢) = W(0)}, the situation is more complex, because the left and
right derivatives of /(z,0) and B(t, ) with respect to ¢ do not coincide and must be

computed separately.
We first derive the right-derivatives, -4-1(t, 0) and d(‘jﬁ B(t,0), by borrowing from

Lemma 3 and making use of the hitting time, 7},(¢), given by

min{z€[0, Q1(0)): u(t) > (t)},if the minimum exists on the event { Q; () >0}

T,(0)= R1(0), if Ri(0) exists on the event
s {Q1(8) = 0} UHQ1(9) > 0} ({e(r) = 1), 1 € [0,01(6))}]
00, otherwise.

(4.9)

LemMma 5 Consider an MTS system with the backorder rule on the event
{W(0) = S(0)}(that is, the system starts in normal operation with full inventory).
Then, for any t > 0 and 6 € 6,

(a) On the event A(0) = {W(O) =SSO} N {r < Tu(0)},

I(z 0) = dZ+ B(t,0) =

do+
(b) On the event B(0) = {W(0) =S} N{r> T.(0)} "{I(t,0) >0},
d d
g 166 =1, —=B(1,6) = 0.
(c) On the event C(68) = {W(0)=S(0)}N{t> T,.(0)} {B(t,0) > 0},
d d
agr 160 =0, 5 B(1.0) =

Proof: Consider a perturbed system with S(6+ Af) =60+ A9, where A6 > 0.
Since W(0) = S(6) < S(0 + A9), it follows that the perturbed system starts in normal
operation. Denote AS = S(0 + A9) — S(0). By Observation 3,

0=01(0+A0) < T,(0) < Ri(0+A0) < Qx(0+A0) on {W(0)=S(0)}, (4.10)

and this holds for all cases of this lemma.
To prove part (a), note first that the event {7,(¢) = 0} can be precluded, since it
implies A(0) = (), where ) denotes the empty set. Otherw1se by the definition of

T,(0) and equations (3.1) and (3.3 d‘g{’f wu(t) — a(t) on A(6), so that

t
W(t,0) = W(0) —/ [a(T) — ()] dT on A(6).
0
Furthermore, the definition of 7,(#) ensures that both {W(¢,0)} and {W(¢,0 + Af)}
are bounded from above by S() on the event A(6), so that
ot
W(t,0+ AG) = W(0) — / [a(r) — pu(r)] dr on A(0).
0

We conclude that W(z,6 + Ag) = W(z,0) are independent of 6 on A(#). The rest of
the proof of part (a) is identical to that of part (a) in Lemma 3.
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To prove parts (b) and (c), observe that part (b) of Assumption 1 implies that
there exists € > 0, such that for any A0 < e,

AS
H(Tu(e)) - O‘(Tu(e))

where the inequality p(7,(6)) — a(T,(6)) > 0 follows from the definition of T,,(6).
Clearly, T,(0) is locally differentiable with respect to 6. In view of equation (4.10), it
follows by a proof similar to that of Lemma 2 that Y (¢, + A9) = Y (z, ) on the event
{W(0)=5(0)} N{t>R1(6 +A0)}. But because R (6 + Af) — T,(6) on {W(0) = S(#)}
as A§ — 0 by equation (4.11), we conclude that %Y (¢,6) = 0 on the event B(6)} |J
C(0). The rest of the proof is similar to that of parts (b) and (c) in Lemma 3. H

Ri(0+ A0) = T,(0) +

on {W(0) = S(0)},  (4.11)

We next derive the left-derivatives, & 1(1,6) and & B(t,0), by borrowing from

Lemma 4, and making use of the hitting time, 7, given by

T, = {mln{t €[0,T): at) >0}, if the minimum exists 4.12)
0, otherwise.

Note that T, is independent of 6.

Lemma 6  Consider an MTS system with the backorder rule on the event {W(0) =
S(0)} (that is, the system starts in normal operation with full inventory). Then, for any
t>0and 0 €O,

(a) On the event A(0) = {W(0) =S0)}({t < T.},

d d
(b) On either of the events Bi(6) ={W(0)=S80)}{To <1} Ht>Tu} N
{1(2,0) > 0} or By(9) = {W(0) = S(0)} N{Ta = Q1 (O)} N{t > R (O)} N {1(2,0) > O},

d d

(c) On either of the events Ci(8) = {W(0)=SO0)}{T. < Q:1(O}N{t>T.}N
{B(t,0) > 0} or G3(6) = {W(0) = S(0)} N{Ta = Q1(0)} N{z > Ru(9)} N {B(¢,0) > 0},
d d

(d) On the event D(0) = {W(0) = S(0)} N{T. = Q:1(0)} N{Q1(6) <t <Ri(6)}N
{1(x,6) > 0},

B(t,0) = 0.

d wQ1(0))  d

WI(I’ 0) = «01(0)’ WB(I’ 0) =0.
(e¢) On the event E(0) ={W(0)=SO)}{T.=010)}N{0:1(0) <t<Ri(O)}N
{B(t,0) > 0},
d 4 4 _ 1(@a(9))
e (¢,0) =0, 10" B(t,0) = W010)
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Proof: Consider a perturbed system with S(6 — Af) =60 — A9, where A6 > 0.
Since by assumption W(0) = S(0) > S(6 — Af), it follows that the perturbed system
starts in overage operation. Denote AS = S(0) — S(6 — Af).

To prove part (a), note first that the event {7, = 0} can be precluded, since it
implies A(6) = (). Otherwise, on the event A(6), the perturbed system is in overage
operation with no demand arrivals, so that W(z,6 — A§) = W(0) = W(z,0) on the
event A(6). The rest of the proof follows from that of part (a) in Lemma 4.

To prove parts (b) and (c), observe that part (b) of Assumption 1 implies that
there exists € > 0, such that for any A < e,

AS

T(0 - 80) = T+ 0

on {W(0) = S(6)}, (4.13)

where the inequality «(7,,) > 0 follows from the definition of T,.
To prove part (b) and (c) on the event B;(6) | C1(9), note that by Observation 3,

T < Ts(0— A8) < O1(0) < Ri(6)  on By(6)| JCi(0). (4.14)

Clearly, T, is locally differentiable with respect to §. In view of equation (4.14), it
follows from a similar proof to that of Lemma 2 that Y(¢,0 — A9) = Y(z,0) on the
event {W(0) = S(0)} N{t > Ts(0 — A9)}. But because Ts(0 — Ad) — T, on {W(0) =
S(6)} as A0 — 0 by equation (4.13), we conclude that - Y(z,6) = 0 on the event
B1(0)J C1(0). The rest of the proof is similar to that of parts (b) and (c) in Lemma 4.

We next prove the remaining cases, namely, parts (b) and (c) for the events B (6)
and C,(6), as well as parts (d) and (e). In all these cases, by Observation 3,

Q1(0) = To < Ts(0 — A0) = Q1(0 — AB) < Ry(6)

(4.15)
on By(0)|JC2(0) | JD(O) | EO).
In other words, the process {I(¢,0)} stays at S(6) until time T,, at which point the
arrival rate jumps, such that a(7T,) > u(7,). It follows that

AS
—— |[a(T) — (T
ey [T — (L) e

on By(0)| JC2(0) | D (O)| JE(0).

But over the interval [Ts(6 — Af), Ri(0 — Af)], both the original system and the
perturbed system operate in their respective normal mode and are driven by
identical dynamics. Therefore, the difference process {W(t,0) — W(t,0 — A9)} is
constant and positive over that interval. Consequently, by part (c) of Assumption 1,
we can choose sufficiently small A§ > 0, such that

W(Ts(0 — A),0) = S(6) —

AS [a(Ta) - M(Tn)]
a(Ty) [1(R1(0)) — a(Rq(9))] (4.17)

on By(0)( JCa(0) | JD(O) | JE(®).

Ri(6— A9) = Ry(0) -
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Furthermore, by the definition of 7s(6 —Af) and equation (4.16), W(t,0)—
W(t,0 — Ah) = Aié"—f;), t € [Ts(0 — Ab), R (6 — AF)]. Combining this with equation
(3.4), we conclude that

_ aq(To) = u(Ta)
Y(,0) = Y(1,0 - 46) = AS—— Fep =" (4.18)

on {Ts(60 —A0) <t < Ry(6 —A0)}.
Moreover,
Y(t,0 —A0) =Y(t,0) on {t > Ry(0)}, (4.19)

due to part (c) of Assumption 1. Next, send AS = Af — 0 in equations (4.13) and
(4.17), yielding Ts(6 —Af) — T, and R;(6 — Af) — Ry(0), respectively. The left
derivative & Y(z,6) can now be readily computed on events B;(6) and C,(0) from
equation (4.19), and on events D(#) and E(6) from equation (4.18). Finally, the rest of
the proof of parts (b) and (c) follows similarly to the proof of parts (b) and (c) of
Lemma 4, while that of parts (d) and (e) follows similarly to the proof of parts (d) and

(e) of Lemma 4. |

THeoreMm 1 W.p.1, the IPA derivatives of the inventory time average with respect to
the base-stock level are given for all T > 0 and 0 € © as follows:

(a) On the event {W(0) < S(6)},

d 1 /7

%141(717 9) = 1{T5(0)<T} T AS(0> 1{[([,(;)>0} d[ (420)
(b) On the event {W(0) > S(0)} {Ts(0) < Q1(0)},

d 1 /T

ELI(T» 0) = 1iz5(0)<1) T o Lir0)>0y dt. (4.21)

(c) On the event {W(0) > S(0)} {Ts(0) = Q1(0)},

d 1 ,U/(Ql(e)) min{R;(0),T}
%LI(Ta 0) = L0,0)<1) T [m /Ql(r%) Lit(o)>0y dt (4.22)

T
+1{R1(9)<T}/ , 110501 dl}

Ri(0)
(d) On the event {W(0) = S(0)},

d 1 /7
—L(T,0) =1 — 1 dr. 423
4o+ I( ; ) {T.(0)<T} T /le) {1(1.0)>0} ( )

H

(e) On the event {W(0) = S(0)} {T. < Q1()},

d T
%L](T, 0) = 1{TG<T} T /T 1{l(t,9)>0} dt. (424)

a
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(f)  On the event {W(0) =S(0)} {T. = 01(0)},

d
FL;(T, 0) = 1{0,0)<1} (4.25)

1 /L(Ql(e)) /min{Rl(G),T} /T
= | 1 dr+1 1 dt|.
T |:a(Q1 (9)) Q1<9) {I(t,0)>0} {R1(9)<T} le) {I(t,0)>0}

Proof: We show that Leibniz’s rule can be applied to equation (2.10) yielding

d 1 d T 1 (T d
AT == [ 1 —— [ 4 . 42
d0= I( ,9) T dei/o (t: 0) dr T/; 4ot (t: 6) dr ( 6)

To this end, note that Assumption 1 and Lemmas 3-6 ensure that w.p.1., the sided
derivatives dflg;(’) exist and are finite over the interval [0, T}, except possibly for a
finite number of time points. Furthermore, since the starting time and ending time in
the integral of equation (4.26) are independent of 6, it follows from Corollary 1 that
the differentiation and the integration operations commute there. The theorem now
follows by substituting the values of the derivatives computed in Lemmas 3-6 into

equation (4.26). ]

THEOREM 2 W.p.1, the IPA derivatives of the backorder time average with respect to
the base-stock level are given for all T > 0 and 6 € © as follows:

(a) On the event {W(0) < S(0)},

d 1 r

ELB(T, 0) = _1{Tg(9)<T} 7 /I‘S(g) 1{3([‘9)>0} dl (427)
(b) On the event {W(0) > S(0)} N{Ts(0) < Q1(0)},

d 1 r

—Lp(T,0) = —1ir0)<1) 14B(1.0)>0} dt. (4.28)

a9 T Jrso

(c) On the event {W(0) > S(0)} N{Ts(8) = 01(0)},

d 1 H(Ql (9)) min{R; (0),T}
25 Le(1.0) = —Low<n 7 {m / Liuosopdt (4.29)

Q1(0)
T
+ 4R, (0)<1} / 1iB(1.0)>01 dt}
Ry(0)
(d) On the event {W(0) = S(6)},
d 1 (T
WLB(Tv 0) = ~1(r,00)<1) T o 1B(0)>0y dt. (4.30)
(e) On the event {W(0) = S(0)} N{T. < Q1(0)},
A (T0) =1 1/T1 dt (4.31)
g L0 = ~Lineny 7 | Lisuo-o dt «
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(f) On the event {W(0) =S(0)} {T. = 01(0)},

d 1 0:(0 min{R;(0),T}
——Lg(T,0) = —1i0,0)<1} = [H( 1(6) / Lip(0)>0y dt (4.32)
g r 01(6)

a(Q1(0))

T
+ iR, (0)<1} / 1(B(.0)>0 dt} .
Ry (0)

Proof: Similar to the proof of Theorem 1. [ |

The transient results in Theorems 1 and 2 extend readily to long-run results as
T — oo.

CoRrOLLARY 3 Let H be any of the hitting times Ts(0), R1(8), T,,(0)or T,. Then, the
corresponding parts in Theorems 1 and 2 assume the common forms

. d 1T
}LII;O WLI(Ta 0) = 1{H<oo}}1moc T /0 Lir(o)>0y dt (4.33)
. d 1T
TI‘T;WLB(T’ 9) = _1{H<m}}11>1107 A 1{B([,0)>0} dt (434)
when the limits exist on the corresponding events. [ |

Thus, for T large enough, equations (4.33) and (4.34) provide computationally
handy approximations of the requisite IPA derivatives. Note further that under
ergodic conditions, we can interpret the limits in equations (4.33) and (4.34) as the
long run (equilibrium) probabilities, Pr{/(#) > 0} and Pr{B(6) > 0}, respectively,
where /(6) and B(f) are random variables having the requisite long-run distributions.

Finally, we show that the IPA derivatives of Theorems 1 and 2 are unbiased.

THEOREM 3 Under Assumptions 1 and 3, the sided IPA derivatives with respect to the
base level parameter, -3 L;(T,0) and % Lg(T,0), are unbiased for all T >0 and
0co.

Proof: Theorems 1 and 2 ensure that for all 7 > 0, Condition (a) of Fact 1 is
satisfied for both L;(7,6) and Lg(T,6). On any event of the form {W(0) = wy}, one
has by definition,

I(t,6) =i(1,0,y) and B(t,6) = b(t,0.y),
where y = S(0) — wy. Thus, for any 6,6, € O,

1 T
Liro) - Lt o)l = | [ o) - 1ona
1 0. (4.35)
< T / ‘I(t, 91) - ](Z, 92)| dr < 2|91 - 92|,
0
where the second inequality is a consequence of Corollary 1. Similarly,
|Lg(T,601) — Lp(T,0,)| < 2|61 — 6s]. (4.36)
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Equations (4.35) and (4.36) establish that Condition (b) of Fact 1 holds for both
L(T,0) and Lg(T,0), thereby completing their proof of unbiasedness. ]

4.2 TPA Derivatives with Respect to the Production Rate Parameter

In this section we derive IPA derivatives for the performance metrics L;(7,6) and
Lg(T,6) with respect to a production rate parameter 6. The approach is to first
derive IPA derivatives for the inventory process, {I(¢,6)}, and backorder process,
{B(t,0)}, and then use the results to derive the IPA derivatives of the requisite
performance metrics.

ASSUMPTION 4

(a) The production rate process {u(t,0)} is subject to equation (2.13).
(b) The process {«a(t)}and the base-stock level, S, are independent of 6.

We point out that unlike Wardi et al. (2002) and Zhao and Melamed (2004),
Assumption 4 admits the possibility that the sided IPA derivatives do not coincide.
Indeed, this could happen on events of the form {/(¢,0) = S} N{«a(t) = u(t,6)}. The
probabilities of these events are generally not zero because /(z,0) = S could hold
true for an extended period of time, and by part (a) of Assumption 1, {a(#)} and
{u(t,6)} have sample paths that are piecewise-constant w.p.1.

In this section, we may assume without loss of generality that W(0) < S, since the
replenishment process, {p(f)}, vanishes during overage operation, so that the value
of 6 has no effect on the state of the system until it enters normal mode. Consequently,
we may assume Y (¢,0) > 0 for all ¢ € [0, 7] without loss of generality.

For notational convenience, define Ry(#) = 0, so that we can write Y (¢,6) = 0 on
the extremal intervals [R;(0), Qj1(6)],j=0,1,---,J(#) — 1. For each positive-length
interval [R;(0), Qj+1(0)], let [E;jx(0), Fix(0)]), k=1,2,---,K;(§) be their extremal
subintervals on which «a(t) = u(z,0), if they exist. Otherwise, if they do not exist, we
set K;(0) = 0.

LeEmma 7

(a) Forj=1,---,J(0), Q;j(9) is locally independent of 0 in a right neighborhood of 6.
(b) For all j=0,1,---,J(0) =1, if K;j(0)=0 or if K;(0) >0 and Fjg g(0) <

Qj11(0), then the representation
t

Y(t,0—A0) = /Q " [a(r) — u(r,0 — AD) dT, t € (Qjr1(8),Ri+1(0)), (4.37)

holds for any 6 € © and sufficiently small A§ > 0.
(¢c) Forallj=0,1,---,J(0)—1,k=1,2,--- K;(§), the representation

t

Y(t,0 — A9) = /E " [a(r) — p(1,0 — AD) dT, te (Eix(9),Fir(0), (4.38)

holds for any 6 € © and sufficiently small A > Q.
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Proof: To prove part (a), we first prove it for j =1 by considering the events
{I(0) < S} and {I(0) = S} separately. On the event {/(0) < S}, Q;(6) = 0, which is
independent of #. On the event {I/(0) = S}, note that a(t) — u(z, 6 + A9) < 0 for A9 >
0 in the interval [0, Q;(0)), whence Y(¢,6 + Af) = 0 in the same interval. Further-
more, Q;(0) corresponds to a jump in {«(f) — pu(t,0)} from non-positive value to a
positive value. By part (b) of Assumption 1, such jumps are independent of 6,
whence Q(0) is locally independent of 6 in a right neighborhood of 6.

We next consider any j > 1, and note that for A0 > 0, a(t) — u(t,0 + A9) < 0 in
the interval [R;_1,Q;(#)). Hence, Y(t,6 + Af) =0 in the same interval, and com-
bining this fact with part (c) of Assumption 1, we conclude that Q;(6) is locally
differentiable with respect to 6 in a right neighborhood of 6. The rest of the proof for
j > 11is the same as that for j = 1 above.

To prove part (b), we first prove it for j = 0 by considering the events {/(0) < S}
and {/(0) = S} separately. On the event {/(0) < S}, O1(f) = 0, and it follows from
equation (3.3) that

t
Y(t,0 — A0) = / [a(T) — pu(r,0 — Af)|dr, te (01(8),Ri(0)), (4.39)
01(9)
for any 6 € © and sufficiently small A9 > 0. On the event {/(0) = S}, when K(0) =
0 or when Ko(6) > 0 and Fy k. (0) < Q1(0), then Q;(#) corresponds to a jump in
{a(t) — u(t,0)} from a negative value to a positive one. By part (b) of Assumption 1,
such jumps are independent of 6, so that equation (4.39) again holds.

We next consider any j > 0, and note that when K;(¢) = 0 or when K;(¢) > 0 and
Fik0)(0) < Qjs1(0), then Qj;1(0) corresponds to a jump in {a(r) — u(t,0)} from a
negative value to a positive one. The rest of the proof for j > 0 is the same as that
for j = 0 above.

To prove part (c), note that each Ej () corresponds to a jump in {a(t) — u(t,0)}
from a negative value to zero. By part (c) of Assumption 1, for sufficiently small
Al > 0, each Ej;(0) is the left endpoint of an extremal interval in which Y(¢,0—
Af) > 0, and that left endpoint is locally independent of 6 in a left neighborhood of
6. Therefore, Y (E; (), — A) = 0 and the representation in equation (4.38) follows
from equation (3.3). |

For each interval [R;(0), Qj+1(8)],j=0,1,---,J(6) — 1, define

(0) . { Qj+1 (19), if K/(Q) =0or K/(G) > 0 and F]-’Kj(g)(e) < Q;‘+1(6) (440)

P; ~ | Ejx0), otherwise.

j+l

Part (c) of Assumption 1 ensures that tlflle Pi1(0) exists.
We first derive the right-derivative, 5 Y (0.0).

LemmA 8 Consider an MTS system with the backorder rule. Then, for any t > 0 and
0 €0,

(a) On the events Aj(0) = {R;j(8) <t < Qj1(0)},j=0,1,---,J(0) — 1,

d
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(b) On the events Bj(§) = {Q;() <t < Rj(0)},j=1,---,J(0),

d t
oY) = —/Qj@ dr = 0(0) -

Proof: To prove part (a), note that a(t) — u(t,6) < 0 on the events A;(6) in a right
neighborhood of §. Therefore, Y(¢,6) =0 on each event A;(f) in a right neigh-
borhood of 6. Part (a) now follows from part (c) of Assumption 1.

To prove part (b), we consider the following two cases.

Case 1: event B;(6)({Q1(0) = 0}. On this event, equation (3.3) implies

Y(t,0) =Y(0)+ /Ot[a(T) — p(T, 0)] dr,

where the initial state Y(0) = S — W(0) is independent of 6. Taking right
derivatives with respect to # in the equation above yields

dY(t,0)
do+ / dr
by Assumption 4 and equation (2.13), which is the requisite result.

Case 2: event B;(0)({Q1(0) > 0} or events B;(¢), j > 1. On any of these events,
equation (3.3) implies

V6o = [ o))

since Y(Q;(#),6) = 0. Taking right derivatives with respect to ¢ in the
equation above yields

MU0 — 0(Q,(01)) — 1(Q,(64).0)] - 0,(6) /Qf«» "

4 0.0)

by Assumption 4 and equation (2.13). By part (a) of Lemma 7, prs

0, thereby yielding the requisite result. u

We next derive the left-derivative, de, Y (t,0). For notational convenience, we
shall use the conventions Fj(¢) = R;(0) and E; ,9)11(0) = Oj41(0), for all j = 0,.
J(0) — 1.

?

LeEmMMA 9 Consider an MTS system with the backorder rule. Then, for any t > 0 and
0 e,

(a) On the events Ajr(0) ={Fjx(0) <t <Ej;1(0)}, j=0,1,....J(0) -1, k=
0,1,...,K;(0),

d
2= Y(t,0) =
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(b) On the events Bj(0) = {Ejx(0) <t < Fix(0)}, j=0,1,...,J(0) -1, k=1,...,
K;(0),

d t
—Yt,9:—/ dr = E;j;(6) —t.
dG, ( ) E/‘.k(a) I»k( )

(¢c) On the events Ci(8) = {Q;(0) <t < Rj(0)},j=1,...,J(0),

d

t
—Yt,G:—/ dr = P;(0) —t.
a Ye0== A0

Proof: To prove part (a), note that «(r) — pu(t,6) < 0 on the events A;;(6) in a left
neighborhood of 6. Therefore, Y(¢,§) =0 on each event A;i(f) in a left
neighborhood of 6. Part (a) now follows from part (c) of Assumption 1.

To prove part (b), consider § — A¢ for A@ > 0. On any event Bj (), one has

a(t) = u(t,0) (4.41)

Y(t.6) =0 (4.42)

Y(t,0 — AG) = /[ [a(T) — p(r, 0 — AG)|dT = /t (T, 0) — p(r, 0 — A9)]dr, (4.43)
Ejy (9) Ej (0)

where equation (4.41) and (4.42) follow by definition, and in equation (4.43) the first
equality follows for sufficiently small A9 > 0 from part (c) of Lemma 7, and the
second follows from equation (4.41), equations (4.42) and (4.43) now imply

_ _ t
lim Y(t,0)—Y(t,0 — A9) _ / dr
A6—0 A9 Eix(0)

which is the requisite result for part (b).
To prove part (c), consider again # — Af for A > 0. On the events C;(6), equation
(3.3) implies

Y(1,6) = /Q o) = (o) (4.44)

To complete the proof, we consider two cases.

Case 1: event C;(0) N{Pj(#) < Q;(#)}. On this event, Y(Pj*(#),0 —A#) =0 for
sufficiently small A > 0 by equation (4.40) and part (c) of Lemma 7. It
follows from equation (3.3) and part (c) of Lemma 7 that

t

Y (1,0 — AG)= /P 0) = (0= 80) dr

0;(6) t
:/ [a(T) — u(r,0 — AB)] dT + / [a(T) — p(T,0 — AG)] dT
P (0) 0,0)

0;(9)
:/ [u(r,0) — p(1, 0 — A9)] dT + / [a(T) — p(r, 0 — AG)] dT,
Pi(6) 0;(0)

(4.45)
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where the third equality is due to fact that on the event {F;(0) <1<
Q;(0)}, one has a(t) = p(t,6). Subtracting equation (4.45) from equation
(4.44) yields

t

[Mﬂ@‘#ﬁﬁ—A@MT—A;JMﬂ@

Q;(0)
Y(6,0) — Y (1,0 — A9) — —/

P (6)

— (1,0 — AD)| dr

=~ [ u(r0) ~ utr. - a0
P:(0)

"
)

whence,

_ _ t
lim Y(6,0) - Y(,0-A0) / dr,
AO—0 Af " (0)

which is the requisite result.
Case 2: event G;(0) (\{P;(0) = Q;(f)}. On this event, equation (4.40) and part (b)
of Lemma 7 imply that for sufficiently small A§ > 0,

(1,0 - A0) — /Q o) (0 a0

The rest of the proof is a simplified version of that in Case 1 above.
|
For eachj=1,2,...,J(0), partition the interval (Q;(6), R;(f)) by two sequences of
subintervals as follows:

1. Define (Gjn(0), Hjm(0)), m =1,2,...,M;(#), to be the extremal subintervals of
(Qj(0),R;(6)) in which I(t,6) > 0

2. Define (U;j,(0),V;n(0)), n=1,2,...,N;(#), to be the extremal subintervals
(Q;(0), R;(0)) in which B(t,0) > 0.

By Assumption 1, M;(6) and N;(0) are finite for all j, w.p.1.
We shall need the following horizon-dependent random indices. The restriction
of J() to a finite time horizon [0, 7] is

_ [ max{j > 1: Q;(#) < T},if it exists
J(T.0) = {0, otherwise. (4.46)

The restriction of K;(6) to a finite time horizon [0, 7] is

‘ [ max{k > 1: E;;(#) < T},if it exists
Ki(T,0) = {O, otherwise. (4.47)

The restriction of M;(f) to a finite time horizon [0, 77 is

A [ max{m > 1: G;,,() < T},if it exists
M;(T.0) = {0, otherwise. (4.48)
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The restriction of N;(6) to a finite time horizon [0, 7] is

' [ max{n > 1: Uj,(¢) < T},if it exists
Ni(T,0) = {07 otherwise. (4.49)

THEOREM 4 W.p.1, the IPA derivatives of the inventory time average with respect to the
production rate parameter are given for all T > 0 and 0 € © as follows:

J(T.,0) M;(T,0

d 1 . .
a0 =37 mZ [min{H,,n(0). T} = Gyun(0)] [min{H,.,(0), T}
+ Gj,m(9) —20(0)] (4.50)
d | T M(To
== Li(T.0) = ; 2 mm{H,m T} = Gjm(0)] [min{H; (), T}
1 ITH KT .
+ Gin(0) = 2P} (0)] + 5z > D min{Fjx(0), T} — Ejx(0)
=0 k=1
(4.51)
Proof: We show that Leibniz’s rule can be applied to equation (2.10) yielding
d 1 d T
%L,(Tﬁ)zfﬁ t,0 ——/ ﬁlt 0)d (4.52)

To this end, note that /(¢,6) = 0 on the events {U;,, <t < Vj,},j=1,...,J(8),n=
1,...,N;(#), so that %I (t,0) = 0 by part (c) of Assumption 1. From equation (3.4),
I(t,0) =S — Y(t,0) on all other events. Consequently, by part (b) of Assumption 4
we can write

d d
20 d&iy(t’a)'
Next, note that Assumption 1 and Lemmas 8 and 9 ensure that w.p.1., the sided
derivatives d9i I(t, 0) exist and are finite over the interval [0, T], except p0551bly for a
finite number of time points. Furthermore, since the starting time and ending time in
the integral of equation (4.52) are independent of 6, it follows from Corollary 2 that
the differentiation and the integration operations commute there. The theorem now
follows by substituting the values of the derivatives computed in Lemmas 8 and 9
into equation (4.52). [ ]

—1(t,0) =

THEOREM 5 W.p.1, the IPA derivatives of the backorder time average with respect to
the production rate parameter are given for all T > 0 and 0 € © as follows:

A L(T,0)= 5 Z Z (min{Va(0), T} = Uyn(0) lmin{ Via(0), T}

+ Ujn(0) —2Q;(0)] (4.53)
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T.0) N,(T0)
A L(T.0)= - Z Z [min{V;s(6), T} — Uj(6)][min{V;0(60), T}
+ Ujn(6) — 2P} (6)] (4.54)

Proof: First note that on the events {U;, <t < Vj,} for all j=1,...,J(T,0),
n=1,...,N;(T,0), one has B(t,0) = Y(t,0) — S by equation (3.4). Consequently, by
part (b) of Assumption 4 we can write

d d
—B(t,0) =——Y(¢
7= B,0) = 22 Y(1,0).
On all other events, B(t,0) = 0 trivially, so it follows from part (c) of Assumption 1
that —4- B(z,6) = 0 there. The rest of the proof is similar to that of Theorem 4. W

Clearly, if «(r) < pu(t,0) for all r € [0, T] satisfying Y (z,6) = 0, then the left and
right derivatives of L; are identical, and so are those of Lg.

Finally, we show that the IPA derivatives with respect to the production rate
parameter are unbiased.

THEOREM 6 Under Assumptions 1 and 4, the sided IPA derivatives with respect to the
production rate parameter, & L;(T,0) and & Lg(T,0), are unbiased for all T > 0
and 0 € O.

Proof: Theorems 4 and 5 ensure that for all 7 > 0, Condition (a) of Fact 1 is
satisfied for both L;(7,60) and Lg(T,0). For any 6,0, € O,

Li(T,01) — Li(T,0,)| = —I(t,0,)] dt
ILi(T.60) = Li(T.62)] = [§ Ji I B) 455)
< LT |1 : 1>—1(r,02)\dr < T|6y — 0],
where the second inequality is a consequence of Corollary 2. Similarly,
|Lp(T,01) — Lg(T,0,)| < T|01 — 6,]. (4.56)

Equations (4.55) and (4.56) establish that Condition (b) of Fact 1 holds for both
L;(T,0) and Lg(T,0), thereby completing their proof of unbiasedness. ]

5 Discussion

This paper formulates Make-to-Stock (MTS) production inventory systems with
backorders in stochastic fluid model (SFM) setting, and derives comprehensive
formulas for IPA derivatives of the time averages of inventory and backorder levels
with respect to the base-stock level and a production rate parameter. All IPA
derivatives obtained are shown to be unbiased.

Since the theoretical results provide a basis for potential IPA-based design and
on-line control of MTS systems, a number of issues merit additional discussion. First
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and foremost, how can IPA derivatives be used to good effect? The point of
computing IPA derivatives with respect to control parameters is to extract
sensitivity information on performance metrics in addition to the metrics them-
selves; in MTS systems, the metrics might be time averages of inventory levels and
backorder levels, and the control parameters might be the base-stock level and
production capacity. Certainly, long-run IPA derivatives may be used to optimize
long-run performance metrics with respect to control parameters, using their [IPA
derivatives to search for optimal parameters [cf. Cassandras et al. (2002)].
Furthermore, in on-line control applications, one can continually measure perfor-
mance metrics of interest, as well as their transient IPA derivatives, and devise
control policies based on both that take actions at discrete times. In particular, one
can employ a quick linear prediction (first-order Taylor Series) to predict system
performance metrics under changed parameters, and use the prediction in the
control policy. Finally, since a control action generally restarts the system from a
new state, the transient IPA derivative would have to be reset and their computa-
tion restarted from the new (initial) state.

Second, it is worth emphasizing the role of right and left IPA derivatives. For
example, suppose the control parameter is the base-stock level (i.e., S(f) = 6) and
the initial inventory level is precisely that same base-stock level (i.e., I(0) = §(0)),
and consider changing the value of §. Then, prospective raising of the base-stock
level would make use of the right derivative, while prospective lowering of the base-
stock level would make use of the left derivative. As those sided derivatives differ,
both of them are necessary for on-line control applications.

Third, in regard to applications, it is further worth pointing out that the
nonparametric nature of all IPA derivatives renders them usable in principle in
both simulation and real-life systems. Of course, actual implementation of the
corresponding formulas would require mapping IPA derivative estimators from the
discrete-flow paradigm to the continuous-flow paradigm. As far as computer imple-
mentation is concerned, although the formulas appear to be complex, all IPA deri-
vatives are readily computable, requiring modest computational resources (CPU
time and storage). In fact, all IPA derivatives can be computed incrementally in
time, with computational updates triggered by the occurrence of hitting times
based on selected value changes in the state of the system (e.g., the inventory or
backorder level becoming positive or ceasing to be positive).

Finally, a key issue is whether or not a fluid-flow paradigm can be successfully
applied to production-inventory systems that have discrete rather than continuous
flows. Since IPA derivatives for discrete-flow systems are biased, comparisons must
be indirect and experiential. We mention that some prior experience with IPA-
based predictions in the context of packet flows in telecommunications queueing
systems supports such paradigm mix [see Cassandras et al. (2002)]. However, a real
test of the success of an IPA-based application is the delivery of improvements in
system performance metrics (e.g., service levels) over extant methods. This will be
the subject of future work.
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