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We study a single-product periodic-review inventory model in which the ordering
quantity is either zero or at least a minimum order size+ The ordering cost is a
linear function of the ordering quantity, and the demand in different time periods
are independent random variables+ The objective is to characterize the inventory
policies that minimize the total discounted ordering, holding, and backorder pen-
alty costs over a finite time horizon+We introduce the concept of an M-increasing
function+ These functions allow us to characterize the optimal inventory policies
everywhere in the state space outside of an interval for each time period+ Further-
more, we identify easily computable upper bounds and asymptotic lower bounds
for these intervals+ Finally, examples are given to demonstrate the complex struc-
ture of the optimal inventory policies+

1. INTRODUCTION

Minimum Order Quantity ~MOQ! is widely used in many industries ~e+g+, apparel,
pharmaceutical, and consumer packaged products!+ In these industries, customers
~e+g+, distributors or retailers! typically have two choices, either not to order from
their suppliers or to order at least a minimum quantity, namely the MOQ+ This MOQ
provides a way for the suppliers to achieve economies of scale in production and
transportation+

A well-known example of MOQ is the fashion sport ski-wear distributor Sport
Obermeyer @7# + Sport Obermeyer outsources almost all of its production to Hong
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Kong and China to reduce production variable cost+ Due to the economy of scale in
mass production, the manufacturing facilities require a minimum ordering quantity
of 600 garments in Hong Kong and 1200 garments in China per order+ The MOQ
constraints apply to a particular item or a group of items, such as all colors of a
particular style+MOQ is not only required in fashion industries where products are
subject to obsolescence ~thus distributors and retailers only place orders for a few
items!, it also applies to many repeatedly ordered items+ For instance, Home Depot
and Wal-Mart have to honor the MOQs specified by the suppliers for many non-
seasonal items they carry+When the suppliers require MOQ, they typically do not
charge a fixed ordering cost ~which is accounted by the MOQ!, but charge the same
unit price per item+ Therefore, the customers’ ordering cost is a linear function of
the ordering quantity+

Minimum order quantity stands as a substantial challenge to managing supply
chains efficiently+ As illustrated by the numerical examples of Fisher and Raman
@7# , MOQ requires the distributors or retailers ~hereafter we use retailer and dis-
tributor interchangeably! to order either none or many+ Thus, it reduces the retail-
ers’ flexibility of responding to demand and eventually increases the retailers’
inventory costs or reduces their service levels+ To provide tools and guidance for
companies to effectively manage inventory when they face MOQs from their sup-
pliers, we model, in this article, this type of problem as stochastic dynamic pro-
grams and investigate the structure of the optimal policy for the single-product,
periodic-review inventory system with MOQ in a finite time horizon+

There is a large body of literature in the general areas of production and inven-
tory management incorporating the impact of the economy of scale+ However,most
efforts have been devoted to models with fixed ordering costs and fixed batch sizes;
little attention has been paid to MOQs+ Scarf @16# proved that an ~s,S! policy is
optimal for periodic-review, single-product inventory systems with fixed ordering
cost and general demand distributions+ An alternative proof is provided by Veinott
@20# under a different set of assumptions+ An excellent review of stochastic inven-
tory systems with fixed ordering cost can be found in Heyman and Sobel @9# + For
systems with fixed batch sizes, Veinott @19# first proved that a reorder point0batch-
transfer policy is optimal+ In this policy, if the inventory level drops below the reor-
der point, orders are placed in batches to raise the inventory level to the smallest
value above the reorder point; if the inventory level is above the reorder point, no
order is placed+ Chen @4# proved that the policy is optimal for multiechelon inven-
tory systems under some regularity conditions+Karlin @10# analyzed a single-period
stochastic inventory system in which a fixed amount is added to stock whenever a
decision to increase stock is made+ This model has applications in production sys-
tems in which the difference between the cost of producing up to the capacity and
the cost of producing any number of units less than the capacity is negligible+ Kar-
lin @10# specified the conditions under which the optimal inventory policy can be
characterized by a single critical number+

Chan and Muckstadt @3# studied a stochastic production-inventory system in
which the production quantity is constrained by a minimum and a maximum level
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in each time period, namely, the production smoothing problem+ They character-
ized the optimal production policy in finite and infinite time horizons under the
discounted cost criterion+ This production smoothing problem is different from the
model studied here because in the former, the action of zero production is absent
and, hence, the action sets are connected and compact+ In the model studied here,
the order quantity is either zero or at least the MOQ; therefore, the action sets are
disjoint and unbounded+As we will see later, these disjoint action sets significantly
complicate the structure of the optimal policies+ Other related work in this general
area includes that of Axsater @1# , De Bodt and Graves @5# , Federgruen and Katalan
@6# , Gallego and Wolf @8# , Karmarkar @11# , Lee and Moinzadeh @13# , Porteus @14# ,
Sethi and Cheng @17# , Zheng and Federgruen @22# , Zipkin @23# , and Song and Yao
@18# +

The work of Fisher and Raman @7# is perhaps the first article explicitly con-
sidering MOQ in stochastic inventory systems+ They considered a distributor man-
aging multiple products in two time periods+ If the distributor decides to order, the
order sizes must be larger than or equal to the MOQs for each time period and less
than the supplier’s production capacity+ They solved the optimal order quantity prob-
lem using stochastic programming, and they quantified the impact of MOQ on the
distributor’s inventory costs for the case of two time periods+ Katehakis and Brad-
ford @12# considered a related single-period, multilocation distribution system with
both minimum and maximum order quantity constraints+ To the best of our knowl-
edge, there are almost no studies on the multiperiod inventory systems with MOQs+
Indeed, the structure of the optimal inventory policy is not known even for the
simplest type of such systems with a single product and unlimited production
capacity+

This article is organized as follows: In Section 2 the model and notation are
presented+ In Section 3 we establish, in Theorem 3+10, the form of the optimal pol-
icy outside of an interval for each time period+ In Lemma 3+9, Lemma 3+12, and
Theorem 3+13 we provide the upper bound and asymptotic lower bound for this
interval in each time period+ Examples are given to demonstrate the complex struc-
ture of the optimal policy+ Section 4 concludes the article by pointing out future
research directions+

2. THE MODEL AND FORMULATION

We consider a single retailer managing a single product and reviewing its inventory
periodically+ External demand is stochastic and a minimum order quantity, M, is
required from the supplier+

The sequence of events is as follows+ At the beginning of a time period, the
retailer reviews the inventory and makes order decisions+ If he orders, the order size
must be at least M units and it is immediately filled+ At the end of the time period,
demand is realized and the retailer fills the demand from on-hand stock+Any exces-
sive demand is backlogged+ Our analysis can be easily extended to systems with
constant replenishment lead times following the standard argument in Heyman and
Sobel @9# +

STOCHASTIC INVENTORY SYSTEMS AND ORDERING POLICIES 259



Let N be an integer that represents the number of time periods in the planning
horizon+ We index time periods n � 1,2, + + + ,N, where N is the first time period in
the planning horizon and 1 is the last+ Let c, b ~0 � b � 1!, h, and p be the unit
ordering cost, the time discounted factor for each time period, the unit inventory
holding cost per time period, and the unit backorder penalty per time period, respec-
tively+We use Dn to denote the external demand in time period n, and it is assumed
that the Dn’s are independent with finite means E~Dn!+ Throughout this article, we
assume p � c+

Following Markov Decision Process ~MDP! notations, let S be the continuous
state space for inventory position x, at the beginning of a time period, and y � x be
the amount ordered in that time period+ y � Ax , where Ax � $x% � @x � M,�`! is
the set of feasible actions+ Let j~x, y,D!� y � D be the transition function, where
D is the demand+

It is easy to verify that the expected inventory and ordering cost in one time
period given that the period starts with an inventory position x and orders in that
period y � x items can be written as follows:

c~ y � x!� E~L~ y,D!!,

where E~{! is the expectation with respect to D and

L~ y,D! � h~ y � D!� �p~D � y!�+

Let Un~x! be the minimum total inventory and ordering costs from the beginning of
nth time period until the end of the planning horizon, given an nth period initial
inventory position x+ Clearly,

U1~x! � inf
y�Ax

$c~ y � x!� E~L~ y,D1!!%,

Un~x! � inf
y�Ax

$c~ y � x!� E~L~ y,Dn !!� bE~Un�1~ y � Dn !!%, n � 2, + + + ,N+

(1)

The salvage value of the unsold products at the end of the planning horizon is zero
~i+e+, U0~x! [ 0!+ Observe that if M � 0, Eq+ ~1! reduces to the well-known inven-
tory model of zero fixed ordering cost @15#+

Define Vn~x!� Un~x!� cx, ∀n; we can simplify Eq+ ~1! as follows:

V1~x! � inf
y�Ax

$cy � E~L~ y,D1!!%,

Vn~x! � inf
y�Ax

$c~1 � b!y � E~L~ y,Dn !!� bE~Vn�1~ y � Dn !!%� bcE~Dn !,

n � 2, + + + ,N+ (2)
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For simplicity, we define gn~ y!� c~1 � b!y � E~L~ y,Dn!! for n � 2 and g1~ y!�
cy � E~L~ y,D1!!; we let Hn~ y!� gn~ y!�bE~Vn�1~ y � Dn!!, ∀n � 2, and H1~ y!�
g1~ y!+We can rewrite Eq+ ~2! as

V1~x! � inf $H1~x!;H1~ y! : y � x � M %,

Vn~x! � inf $Hn~x!;Hn~ y! : y � x � M %� bcE~Dn !, n � 2, + + + ,N+ (3)

We can prove the following proposition by induction+

Proposition 2.1: If M � M ' while everything else is identical, then Un~x!� Un
'~x!,

∀x, where U ~U '! corresponds to M ~M ', respectively).

The proof is based on the observation that Ax � Ax
' , where A ~A'! corresponds

to M ~M ' , respectively!+We omit the details of the proof+

3. STRUCTURE OF THE OPTIMAL POLICY

We first focus on the last time period in the planning horizon+

Definition 3.1: Consider two continuous functions, f~ y! and c~ y! , where y �
~�`,�`! . If there exists a positive Se, Nd, and a v � @a, b# where a and b are
finite constants, so that f~ y! � c~ y!, ∀y � @a,b# , and ~f~a � e! � c~a � e!!
~f~b � d! � c~b � d!! � 0 for any 0 � e � Se and 0 � d � Nd, then we define
a to be a junction.

Intuitively, a junction is the minimum point of an interval in which f~ y! �
c~ y!� 0 and beyond which, f~ y!� c~ y! changes sign+

Lemma 3.2: Given any convex function f~ y!, y � ~�`,�`! , that satisfies f~ y!r
�` as 6y 6 r �`, define y * to be the smallest value at which f~ y! reaches the
global minimum.

1. There exists a unique and finite junction y0 between f~ y! and f~ y � M ! .
2.

f~x! � f~x � M ' !, ∀x � y0 , ∀M ' � M,

f~x! � f~x � M !, ∀x � y0 +

3. y * � M � y0 � y *.

Proof:

1+ Observe that f~x! is continuous ~due to convexity!, that there exists a
y1 � �` so that f~ y1! � f~ y1 � M !, and that there exists a y2 � �` so
that f~ y2! � f~ y2 � M !+ It follows from the Intermediate Value Theorem
of continuous functions that there must exist a junction between f~ y! and
f~ y � M !, and all junctions between f~ y! and f~ y � M ! must be finite+
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To show the uniqueness of the junction, we prove that if f~ y1! �
f~ y1 � M ! and f~ y2! � f~ y2 � M ! for two points y1 � y2, then f~ y! �
f~ y � M !, ∀y � ~ y1, y2!+

For any y � ~ y1, y2!, the convexity of f~ y! implies that

f~ y!� f~ y1!

y � y1

�
f~ y � M !� f~ y1 � M !

y � y1

and

f~ y2 !� f~ y!

y2 � y
�
f~ y2 � M !� f~ y � M !

y2 � y
+

Thus,

f~ y1 � M !� f~ y1! � f~ y � M !� f~ y!� f~ y2 � M !� f~ y2 !+

Since f~ y1 � M !�f~ y1!�f~ y2 � M !�f~ y2!� 0, the proof of part 1 is
complete+

2+ Consider ∀x � y0+ Due to the convexity of f~x!, we have

f~x!� f~ y0 !

x � y0

�
f~x � M !� f~ y0 � M !

x � y0

+

Thus, f~ y0! � f~ y0 � M ! implies f~x! � f~x � M !+ The convexity of
f~x! further implies that

f~x � M !� f~x!

M
�
f~x � M ' !� f~x!

M ' , ∀M ' � M;

hence, f~x! � f~x � M '!+
Consider ∀x � y0+ Due to the convexity of f~x!, we have

f~ y0 !� f~x!

y0 � x
�
f~ y0 � M !� f~x � M !

y0 � x
+

Thus, f~ y0!� f~ y0 � M ! implies f~x! � f~x � M !+
3+ First, there must exist a point y, y *� M � y � y * so that f~ y!�f~ y � M !+

This is true because f~ y! is continuous and f~ y! ~f~ y � M !! reaches the
global minimum at y * ~ y *� M, respectively!+ Hence, the uniqueness of the
junction y0 implies that y0 � y *+ Second, because f~ y *� M !� f~ y *! ~due
to the fact that y * is the smallest global minimum of f~ y!!, the uniqueness
of the junction y0 implies that y0 � y * � M+ �

Clearly, H1~ y! is convex, and since p � c, H1~ y! tends to infinity as 6y 6r `+
Thus, Lemma 3+2 holds for H1~ y!+ Define the smallest global minimum of H1~ y! to
be y1

* and the junction between H1~ y! and H1~ y�M ! to be y1+The following theorem
characterizes the optimal policy for the single-period inventory systems with MOQ+
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Theorem 3.3: In the single-period problem, the optimal policy, given the initial
inventory position x, is to order

�
y1
*� x, x � y1

*� M

M, y1
*� M � x � y1

0, otherwise+

Proof: For x � y1
* � M, the global minimum y1

* is a feasible order-up-to level;
thus, it is optimal to order y1

*� x+ For x � y1, since H1~x � M '!� H1~x!, ∀M '� M
~Lemma 3+2!, the optimal policy is to order nothing+ For x that satisfies y1

*� M �
x � y1, first notice that H1~x � M ! � H1~x! ~Lemma 3+2!, which implies that we
should order at least M; second, notice that H1~x � M '!� H1~x � M !, ∀M ' � M,
because x � M � y1

* and H1~ y! is convex+ Thus, only ordering M is the optimal
policy+ �

The optimal policy is illustrated in Figure 1+We point out that the single-period
optimal policy for the model with MOQ has a different structure than the ~s,S!
policy that is optimal for the model of fixed ordering cost and than the reorder
point0batch-transfer policy that is optimal for the model of fixed batch sizes+

Now consider any time period n,1 � n � N+We first show that the following
properties hold for Hn~ y!+

Proposition 3.4: Hn~ y!, n � 1 has the following properties:

1. Hn~ y! is continuous.
2. Hn~ y! � 0 and Hn~ y!r �` as 6y 6r �`.

Proof:

1+ The proof is by induction+ Assume that Hn�1~ y! is continuous; then
it is easily seen that inf $Hn�1~ y! : y � x � M % is continuous because

Figure 1. The cost function of a single-period inventory system with MOQ+
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the boundary x � M is a continuous function of x+ Thus, Vn�1~x! �
inf $Hn�1~x!; inf $Hn�1~ y! : y � x � M %% is continuous because the infin-
mum of continuous functions is continuous+ Hence, Hn~ y! � gn~ y! �
bE~Vn�1~ y � Dn!! is continuous+ Finally, the continuity of H1~ y! implies
the result+

2+ Notice that for n � 1,

Hn~ y! � gn~ y!� bE~Vn�1~ y � Dn !!

� c~1 � b!y � E~L~ y,Dn !!� bE~Un�1~ y � Dn !� c~ y � Dn !!

� cy � E~L~ y,Dn !!� bE~Un�1~ y � Dn !!� bcE~Dn !

� E~~h � c!~ y � Dn !
� � ~p� c!~Dn � y!�!� bE~Un�1~ y � Dn !!+

(4)

Since E~~h � c!~ y � Dn!
� � ~p� c!~Dn � y!�! is nonnegative and tends to

positive infinity as 6y 6r` ~due to p� c!, the fact that Un�1~{!� 0 implies
the result+ �

Definition 3.5: f~x! is an M-increasing function if f~x! � f~x � M '! , ∀x and
∀M ' � M.

Note that the regular nondecreasing functions are special cases of the M-
increasing function for which M � 0+ The definition of the M-increasing functions
directly implies the following proposition+

Proposition 3.6: If f~x! and c~x! are M-increasing functions, then the following
hold:

1. af~x!� bc~x! is M-increasing for nonnegative a and b.
2. E~f~x � D!! is M-increasing, where E~{! is the expectation with respect

to D.
3. f~x! is M '-increasing with ∀M ' � M.

Lemma 3.7: Vn~x! is an M-increasing function for all n � 1.

Proof: The result holds because Vn~x!� infy�Ax
$Hn~ y!%� bcE~Dn! and Ax�M ' �

Ax , ∀M ' � M+ �

To characterize the optimal policy for time period n � 1, define the smallest
global minimum of Hn~ y! to be yn

* ~it is finite due to Proposition 3+4!+ Since the
single-period cost functions gn~ y! are convex and gn~ y! r �` as 6y 6 r �`
because p � c, we can define yn,G to be the unique junction between gn~ y! and
gn~ y � M ! ~Lemma 3+2!+ Observe that if the demand is identically distributed,
yn,G is a constant for all n � 1; therefore, we let yG � y2,G for simplicity+

Following the same logic as in the proof of Lemma 3+2,we can show that Hn~ y!
and Hn~ y � M ! must have at least one junction in ~ yn

*� M, yn
*# because Hn~ y! is

continuous, and Hn~ y! ~Hn~ y � M !! reaches the global minimum at yn
* ~ yn

* � M,
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respectively!+ Let ryn be the smallest junction between Hn~ y! and Hn~ y � M ! in
~ yn
*� M, yn

*# and let Tyn~M '! be the largest junction between Hn~ y! and Hn~ y � M '!
for M ' � M+ We define Iyn � maxM '�M $ Tyn~M

' !% + For the ease of exposition, we
simplify the notation Tyn~M ! to Tyn+

Given these definitions, we can make the following observations+

Observation 3.8:

~a! gn~ y! is M-increasing for y � yn,G ~i+e+, gn~ y! � gn~ y � M '!, ∀M ' � M,
∀y � yn,G ! ~Lemma 3+2!+

~b! For all y � @ yn
*� M, ryn!, Hn~ y � M ! � Hn~ y!+

~c! Due to the asymptotic behavior of Hn~ y! ~Proposition 3+4!, for all y � Iyn

we have Hn~ y! � Hn~ y � M '!, ∀M ' � M ~M-increasing!+

The following relationships hold+

Lemma 3.9: yn
*� M � ryn � Iyn � yn,G.

Proof: The first and second inequalities follow by the definitions of ryn and Iyn+ To
show the third inequality, we use contradiction+ Suppose yn,G � Iyn; first observe
that for all y � yn,G , Hn~ y!� gn~ y!� bE~Vn�1~ y � Dn!! is M-increasing+ This is
true because gn~ y! is M-increasing, ∀y � yn,G ~Observation 3+8~a!!, and Vn�1~ y! is
M-increasing for all y, Proposition 3+6 implies the result+Thus, for any y � ~ yn,G , Iyn!,
we must have Hn~ y! � Hn~ y � M '!, ∀M ' � M+ However, by the definition of Iyn,
there must exist a M '� M and a y � ~ yn,G , Iyn! such that Hn~ y � M '!� Hn~ y!+ This
completes the proof+ �

Now we are ready to show the optimal policy in certain regions of the state
space+

Theorem 3.10: In the multiple-period problem, the optimal policy at time period
n � 1, given the initial inventory position x, is to order

�
yn
*� x, x � yn

*� M

zn
*~x!� x, yn

*� M � x � ryn

0, x � Iyn ,

where zn
*~x! is a nondecreasing function of x and zn

*~x!� x � M.

Proof: For x � yn
*� M, the optimal policy is obviously to order up to yn

* since the
global minimum yn

* is feasible for x+
For yn

*� M � x � ryn, it is optimal to order up to level zn
*~x!� x � M because

Hn~ y � M ! � Hn~ y! for all y � ~ yn
* � M, ryn! ~Observation 3+8~b!!+ To show that

zn
*~x! is a nondecreasing function, consider x, x ' � ~ yn

*� M, ryn# and assume x � x ' ;
then arg miny�@x�M,�`!Hn~ y! � arg miny�@x '�M,�`!Hn~ y!+

For x � Iyn, Hn~ y!� gn~ y!� bE~Vn�1~ y � Dn!! is M-increasing ~Observation
3+8~c!!; thus, the optimal policy is to order nothing+ �
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The example in Figure 2 shows that zn
*~x! might not always be equal to x � M

for x � ~ yn
* � M, ryn# + The example has two time periods with a deterministic de-

mand seven units realized in the first period and a deterministic demand five units
realized in the second period ~the same observation can be made when the demand
in the second period is also seven!, and M � 10, p� 10, h � 1, and c � 0+ See Fig-
ure 2 for the definition of y ' and Y ' + It is obvious from Figure 2 that if y2

*� M �
x � y ' , z2

*~x!� x � M; however, if y '� x � Y ' , z2
*~x!� Y '� M; and, finally, if Y '�

x � ryn, z2
*~x! � x � M+ We have examples ~not reported here! with stochastic

demand in which there exist multiple y’s and Y’s+These examples show that the opti-
mal policies of the multiperiod systems generally have different structures than those
of the single-period systems ~Theorem 3+3!+ Together with the single-period opti-
mal policy, these examples demonstrate that neither the optimal policy in terms of the
ordering quantity nor the optimal policy in terms of the order-up-to level is monotone+

Theorem 3+10 characterizes the optimal policy in the state space except for
the interval Vn � ~ ryn, Iyn# + We have numerical examples ~not reported here! to
show that Hn~ y! has multiple junctions with Hn~ y � M !; thus, Vn can be non-
empty+ To characterize the optimal policy in this interval, we need to answer the
following question: Does there exist a unique point yn

0 � Vn so that we should
order at least M for ∀x � yn

0 and order nothing for ∀x � yn
0? If there exists such

a point, then yn
0 � Iyn because we should not order for x � Iyn ~Theorem 3+10!, and

there must exist a e � 0 so that for x � ~ Iyn � e, Iyn!, we should order ~due to the
definition of junction and the continuity of Hn~ y!!+ However, when Hn~ y! and

   

Figure 2. Example 1+
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Hn~ y � M ! have multiple junctions, such a point might not exist+ For instance,
Figure 3 illustrates a case in which Hn~ y! has three junctions with Hn~ y � M !,
with ryn ~ Tyn! being the smallest ~largest, respectively! junction+ If x � ryn, we should
order; if x � ~ ryn , yn

' ! ~see Fig+ 3 for the definition of yn
' !, we should not order; if

x � ~ yn
' , Tyn !, we should again order; and if x � Tyn we should again not order+ It

is still not clear under what conditions such a case might exist+ Thus, the existence
of such a point yn

0 is an open question+
We next provide bounds for $ yn

*% as nr ` in the case of stationary demands+
Observe that Lemma 3+9 specifies upper bounds for yn

*, ∀n; therefore, we focus
on lower bounds+We define yL to be the junction between E~L~ y,D!! and E~L~ y �
M,D!!+ A simple heuristic policy works as follows: Order up to y � @ yL, yL � M #
if x � yL; otherwise, do not order+ It is easily seen that if the initial inventory
position of a time period x � @ yL, yL � M # , the expected cost in this period is no
more than c~M � E~D!!� E~L~ yL,D!!+ Thus, the infinite horizon long-run aver-
age cost and the total discounted cost of this heuristic policy are bounded from
above for an initial state x � @ yL, yL � M # +

Proposition 3.11: For stationary demand, the smallest global minimum of Hn~{! ,
yn
* , is uniformly bounded from below for all n.

Proof: The proof is by contradiction+ If there exists a subsequence nk so that
ynk

* r�` as nkr�`, Hnk
~ ynk

* !r�` ~by Eq+ ~4! and part 2 of Proposition 3+4!+
Since Vnk�1~x!� Hnk

~ ynk

* !�bcE~Dnk�1!, ∀x, Vnk�1~x!r�`, ∀x � @ yL, yL � M #
as nk r �`+ This creates a contradiction because the discounted cost Unk�1~x!�
Vnk�1~x!� cx is bounded by the total discounted cost of the heuristic policy+ �

It follows from Lemma 3+9 and Proposition 3+11 that there exists a compact set
V so that yn

* � V, ∀n+ To obtain a lower bound for the limit points of $ yn
*% , we

assume without loss of generality that c � 0 @21#; then yL � yG , Vn~x!� Un~x!, and

Un~x! � inf
y�Ax

$E~L~ y,D!!� bE~Un�1~ y � D!!%+ (5)

Figure 3. Example 2+
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Since the single-period cost function is nonnegative, Bertsekas @2# showed that
Un~x! � Un�1~x!, ∀x, n, and there exists a function U~x! such that

U~x! � inf
y�Ax

$E~L~ y,D!!� bE~U~ y � D!!%+ (6)

In addition, for all x,l � R, and all n � 1,2, + + + , the sets Bn~x,l! � $ y �
Ax 6E~L~ y,D!!� bE~Un~ y � D!!� l% are compact ~Proposition 3+4 and Eq+ ~14!!+
Thus, using Proposition ~1+7! of Bertsekas @2, p+ 148# , it follows that Un~x! r
U~x! pointwisely as n r `+ Thus, Hn~ y! r E~L~ y,D!! � bE~U~ y � D!! point-
wisely ~by the monotone convergence theorem!+ Define H~ y! � E~L~ y,D!! �
bE~U~ y � D!!+ H~ y! satisfies Proposition 3+4 because Hn~ y! r H~ y! point-
wisely as n r ` and Un~{! � 0, ∀n+ Finally, in V, Hn~ y! converges uniformly to
H~ y! because V is compact+

Lemma 3.12: Let y * be the smallest global minimum of H~ y!; then y * � yG.

Proof: For all x � S,

U~x! � H~ y * !

� E~L~ y *,D!!� bE~U~ y * � D!!

� E~L~ y *,D!!� bE~L~ y *,D!!� {{{

�
E~L~ y *,D!!

1 � b
+

Since the heuristic policy has a long-run average cost less than or equal to
E~L~ yG ,D!!, for a x � @ yG , yG � M # ,

E~L~ y *,D!!

1 � b
� U~x!�

E~L~ yG ,D!!

1 � b
+ (7)

To show that y *� yG , we observe that if y * � yG , then E~L~ y *,D!!� E~L~ yG ,D!!
from the definition of y *, the convexity and asymptotic behavior of E~L~ y,D!!+
Thus, ~7! is violated+ �

Now we are ready to provide a lower bound for the limit points of $ yn
*% +

Theorem 3.13: limnr` yn
* � y *.

Proof: The proof is by contradiction+ Consider a limit point [y of $ yn
*% ; that is, there

exists a subsequence nk so that as nkr `, ynk

* r [y+ Suppose [y � y *+ Because y * is
the smallest global minimum of H~{!, we must have

H~ [y! � H~ y * !+ (8)
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On the other hand, the definition of ynk

* , ∀nk, implies that

Hnk
~ ynk

* ! � Hnk
~ y * !+ (9)

Let nkr `; first we have

Hnk
~ y * !r H~ y * !, (10)

due to the pointwise convergence of Hn~{!+ Second, we observe that

6H~ [y!� Hnk
~ ynk

* !6 � 6H~ [y!� H~ ynk

* !6� 6H~ ynk

* !� Hnk
~ ynk

* !6+

As nkr `, the first term on the right-hand side converges to zero because H~{! is
continuous; the second term on the right-hand side also converges to zero because
Hnk
~{! uniformly converges to H~{! in V+ Thus, we must have

Hnk
~ ynk

* !r H~ [y!+ (11)

Inequality ~9! and relations ~10! and ~11! imply H~ [y!� H~ y *!+ This completes the
proof by contradiction+ �

In the case of stationary demand, it follows from Theorem 3+13 and Lemmas
3+9 and 3+12 that the interval @ ryn, Iyn# is asymptotically bounded by @ yG � M, yG # ,
where yG can be easily determined from the known single-period cost function+
Furthermore, Iyn is asymptotically bounded from above by yn

*+ Therefore, Theo-
rem 3+10 implies that asymptotically it is optimal to stop ordering above a certain
point smaller than or equal to yn

*+

4. CONCLUSION

In this article,we partially characterized the optimal inventory policy for the single-
product, periodic-review inventory systems in which the ordering cost is linear but
the order size must be either zero or larger than or equal to a minimum order quan-
tity+ There are many interesting research topics left unexplored for the stochastic
inventory systems with minimum order quantity+ For instance, we still do not know
whether there exists a unique boundary between the ordering region and the non-
ordering region; nor do we know the existence of a stationary optimal control pol-
icy in the infinite time horizon under the average cost criterion; finally, given the
complex structure of the optimal policy, easily implementable and effective heu-
ristic policies need to be developed for the inventory systems with either a single
product or multiple products sharing the minimum order quantity+
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