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Abstract

Collaboration and partnership are the way of life for large complex projects in many indus-

tries. While they offer irresistible benefits in market expansion, technological innovation, and

cost reduction, they also present a significant challenge in incentives and coordination of the

project supply chains. In this paper, we study strategic behaviors of firms under the popular

loss-sharing partnership in joint projects by a novel model that integrates the economic theory

of teamwork with project management specifics. We provide insights into the impact of col-

laboration on the project performance. For a general project network with both parallel and

sequential tasks where each firm faces a time-cost trade-off, we find an inherent conflict of in-

terests between individual firms and the project. Depending on the cost and network structure,

we made a few surprising discoveries, such as, the Prisoners’ Dilemma, the Supplier’s Dilemma,

and the Coauthors’ Dilemma; these dilemmas reveal scenarios in which individual firms are

motivated to take actions against the best interests of the project and exactly how collaboration

can hurt. As remedy, we enhance collaboration by a set of new provisions into a “fair sharing”

partnership and prove its effectiveness in aligning individual firms’ interests with that of the

project.

Keywords: Collaboration, partnerships, outsourcing, project management, supply chain coordi-

nation, time-cost trade-off, loss sharing, fair sharing.
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1 Introduction

Over the last three to four decades, advances in technology and the networked economy have led to

the evolution of the business models in many project driven industries, from the “one-firm-does-all”

approach to a more collaborative one on a global basis. Examples can be found in book publishing,

commercial aerospace, and engineering-procurement-construction (EPC) industries. While projects

in these industries vary significantly in content and scale, they share the following commonalities:

First, they require diverse knowledge and expertise; Second, they demand a significant investment

of time and/or capital up front. The significant up front investment mandates market expansion a

necessity for success.

The book publishing industry is popularized by books with many coauthors. Using textbooks on

operations management as an example, a simple search of the key-word “operations management”

on Amazon.com in September 2013 returns 48 textbooks which are the most relevant (definition:

(1) production & operations section (2) hardcover (3) four stars & up). Among them, 17 (35.42%)

are single authored, 19 (39.58%) have two authors, and the rest have three or more authors. Thus,

coauthored books account for a majority (about 65%) of the most relevant textbooks on operations

management. Replicating the search on “supply chain management” and “marketing science”

returns similar results.

In the commercial aerospace industry, suppliers are playing an increasingly important role

in the development of new aircrafts. Recent examples are Boeing 787 Dreamliner, Airbus 380,

China Comac C919 and Airbus 350. In particular, the Boeing 787 Dreamliner outsourced 65%

of the development work to more than 100 suppliers from 12 countries (see Horng and Bozdogan

(2007) and Exostar (2007)). Tier 1 suppliers design and fabricate 11 major subassemblies, Boeing

integrates and assembles the airplane. To manage the relationship with the suppliers, Boeing made

the suppliers stakeholders of the program by establishing a collaborative partnership (similar to the

coauthorship) where the suppliers are responsible for the non-recurring development cost of their

tasks and must wait until the completion of the project to get paid (see Xu and Zhao, 2011).

In the EPC industries, the $150 billion international space station (ISS) is a representative

example where the design and construction of ISS are spread out to fifteen countries around the

world. The elements of ISS are not assembled on the ground but launched from different countries

and mated together on orbit. Each country invests a huge amount of money into its elements and

takes the responsibility of their maintenance. Five countries are the principals (partners) of ISS
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due to their significant contributions (see NASA, 2013).

As we can see, collaboration and partnership are everywhere, especially in large complex

projects. By definition (Macmillan Dictionary), collaboration is “the action of working with some-

one to produce or create something”. In the project management context, we define collaboration

the basic form precisely as follows: the workload of a project, for instance, different tasks, is spread

out to multiple players (firms) where each player is fully responsible for the financial needs of its

own tasks until the completion of the project and share the revenue (or the credit or the utility)

when the project is completed. This definition is consistent to the coauthorship in book publishing,

the collaborative partnership of the Boeing 787 Dreamliner program, and the agreement among

multiple countries for the International Space Station. For the ease of exposition, we call the finan-

cial arrangement of this kind of collaboration, the “loss-sharing partnership”, as the loss due to a

project delay is shared among all players. We also call the supply chain created by spreading the

workload of a project among multiple firms “a project-driven supply chain”.

Collaboration and partnership offer significant benefits to projects: First, they allows the project

to utilize the best in-class expertise and knowledge. For instance, authors with different expertise

can combine their domain knowledge in a single book. Second, a collaborative partnership allows

multiple players to share the up front investment and thus make a costly project that is infeasible

for any individual player feasible, as in the ISS project. Thirdly, collaboration and partnership are

essential to market expansion. As witnessed in the Boeing 787 Dreamliner program, the suppliers

are the stakeholders of the program and thus are motivated to sell the plane in their own countries

and keep the customers waiting despite the significant delay of the program.

Collaboration (and partnership) is one way to outsource the workload of a project, subcon-

tracting is another. Collaboration (and the “loss-sharing ” partnership) differs from subcontracting

because in the latter, suppliers get paid when their tasks are completed and certified. Thus in sub-

contracting, a supplier’s interests are tied only to its tasks, whereas in collaboration, its interests

are tied to the project. This difference is important because collaboration provides a much stronger

incentive than subcontracting to the players to expand the market (so everyone gets more) and

keep customers waiting until the final completion of the project (so everyone loses less).

Although the benefits are irresistible, collaboration (and partnership) poses a significant chal-

lenge in the incentive and coordination of joint projects (or project-driven supply chains); in the

economics terms, collaboration may suffer the externalities. To see this intuitively, let’s consider a
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Figure 1: Collaboration in a joint project.

simple example (see Figure 1) where a project has five tasks and four participating companies. It

is easily seen that firm B can only start its task after firm A completes its tasks, and has to watch

out for firm D’s completion time to determine its own task duration. Thus each company’s cost

and schedule depend not only on its own effort but also on the efforts of other companies working

on other parts of the same project. In this way, collaboration introduces gaming issues to project

management where the ultimate goal of each firm is to optimize its own benefit even if doing so

harms the interests of the project.

Although the economics and supply chain literatures study externalities and gaming issues ex-

tensively, they rarely consider project management specifics, e.g., project networks, cost structures

and time-cost trade-off. In this paper, we combine the game theoretical models of the economics

and supply chain literatures with operational specifics drawn from the project management lit-

erature to study strategic gaming behaviors of firms under loss sharing partnership in joint (i.e.,

collaborative) projects. Our objective is to provide insights into the following issues: (1) What is

the performance of the project in time and cost under loss sharing? (2) How do project network

and cost structure affect the results? (3) How to design a collaborative partnership that aligns the

interests of the firms with that of the project?

To this end, we consider a two-level project network with parallel tasks (e.g., subsystems) in

the first level and an integration task (e.g., final assembly) in the second level. Such a project

network is quite representative in practice. Each firm faces a time-cost trade-off and must decide

its task duration. We study various cost and network structures and characterize the subgame
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perfect equilibriums either in closed-form or by numerical algorithms. We find that under the loss

sharing partnership, there is an inherent mismatch between individual firms’ best interests and that

of the project. Depending on the cost and network structures, we made a few surprising discoveries,

such as (1) the Prisoners’ Dilemma: even though keeping the optimal schedule benefits the entire

project, it can be in each firm’s best interests to delay; (2) the Supplier’s Dilemma: if costs are

time-dependent, the supplier may have to delay (even at a loss) in order to raise the penalty too

high for the manufacturer to delay, to avoid a greater loss; (3) the Coauthors’ Dilemma: a firm

can expedite its task but cannot expedite the project because if it expedites, other firms will delay.

Finally, we present a new “fair sharing” partnership which enhances collaboration the basic form

(the loss sharing partnership) by a set of new provisions and prove its capability to align individual

firms’ financial interests with that of the project.

The paper is organized as follows. In §2, we review the related literature; which is followed by §3

where we introduce our models and methodology. In §4, we study firms’ strategic gaming behaviors

under loss sharing. In §5, we present the “fair sharing” partnership and prove its effectiveness. We

conclude the paper in §6 with a brief summary of our results.

2 Literature

This paper is related to the bodies of literature on project management, economics theory of

teamwork, development chain management and project/supply chain interfaces. We shall review

related results in each area and point out the difference from our work.

Classic project management literature. The most well known results in this literature include

the critical path method (CPM), project evaluation and review techniques (PERT), time-cost

analysis (TCA), and resource constrained project scheduling (RCPS). This literature focuses on the

scheduling and planning of project(s) within a single firm and thus the main issue is on optimization.

We refer the reader to Nahmias (2008) and Jozefowska and Weglarz (2006) for recent surveys. Our

paper draws the project management details, e.g., cost structure, project network and time-cost

trade-off, from this literature but analyzes incentives and gaming behaviors under partnerships in

a multi-firm joint project by a game theoretic model.

Classic economics literature of teamwork. The economics literature of teamwork discusses

incentives and contracts in general teamwork settings. This literature is vast, we refer the reader
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to several seminal papers, e.g., Holmstrom (1982), Demski and Sappington (1984), McAfee and

McMillan (1986), and Holmstrom and Milgrom (1991), for principal-agent models and moral hazard

games; and Bhattacharyya and Lafontaine (1995), Kim and Wang (1998), and Al-Najjar (1997) for

the double moral hazard games. Our paper enriches and expands this literature by integrating the

general economics theory with project management specifics.

Bidding and subcontracting in project management. This body of literature studies project

management issues involving multiple firms, such as project bidding and subcontracting. El-

maghraby (1990) studies project bidding under deterministic and probabilistic activity durations

from the contractor’s perspective, while Gutierrez and Paul (2000) compares fixed price contracts,

cost-plus contracts and menu contracts in project bidding from the project owner’s perspective.

Paul and Gutierrez (2005) studies how to assign tasks to contractors for projects with parallel or

serial tasks. Szmerekovsky (2005) studies the impact of payment schedule on contractors’ perfor-

mance. In this model, the owner selects the payment terms in the first place, the contractor then

decides the schedule to maximize its net present value. Aydinliyim and Vairaktarakis (2010) con-

siders a set of manufacturers who outsource certain operations to a single third party by booking

its capacity, and the third party identifies a schedule that minimizes the total cost for all manu-

facturers. Our paper differs from this literature in two ways: first, we consider collaboration and

partnerships which are structurally different from subcontracting as shown in §1. Second, all part-

ners considered in this paper have to contribute to the workload and share the outcome, while in

the subcontracting literature, the project owner does not work but only supervises the contractors’

work.

Development chain management. This stream of literature studies issues in the development

of new products within a single firm and more recently involving multiple firms. For instance,

Bhaskaran and Krishnan (2009) studies a development chain with two firms, a focal firm and a

partner firm. Their model considers the cost, time, and quality triangle under three partnerships:

revenue sharing, investment sharing and innovation sharing. They show that simple revenue sharing

does not work well and leads to underinvestment in quality improvements. Alternatively, the

investment sharing and innovation sharing, are better than revenue sharing in collaboration. Our

paper contributes to this literature by incorporating project management specifics, such as, project

network and time-cost trade-off (concepts developed in the classic project management literature)

into the analysis.
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Project management and supply chain interfaces. This literature studies the management

of projects that involve multiple firms from a supply chain perspective and consider project man-

agement specifics. It is a fairly new research area but has attracted quite some attentions recently

from the operations management community. For instance, Bayiz and Corbett (2005) introduces

a principal-multi-agent game to project management by considering projects either with two se-

quential tasks or with two parallel tasks. They analyze the effectiveness of the fixed-price contracts

versus incentive contracts in a subcontracting arrangement. Kwon, Lippman, McCardle, and Tang

(2010) analyzes delay payment versus no delay payment in a project management setting where

different but parallel tasks are done by different suppliers. They consider a simultaneous game

among suppliers while the manufacturer does not contribute to the project but only selects pay-

ment regimes. By assuming exponentially distributed task durations, they showed that the delayed

payment regime is more preferred by the manufacturer when its revenue is low. In addition, under

information symmetry, the delayed payment regime is preferred in the presence of a large number of

suppliers. In our paper, the manufacturer contributes to the workload and so the project network

has tasks both in parallel and in sequential. This new network entails a more delicate interaction

among the suppliers and the manufacturer, and provides a rich ground for new discoveries and

insights.

3 The Model and Preliminaries

In this section, we introduce the fundamentals of our model. First, we present the project man-

agement specifics such as the project cost structure and project network. Second, we provide more

details on the loss sharing and fair sharing partnerships. Finally, we present the game theoretical

model and our methodology.

Project Cost Structure. We can classify project costs into two categories: direct cost and

indirect cost. Direct cost includes all costs directly contributing to a task, such as the cost of

management, labor, material and shipping. Normally, a longer task duration is coupled with a

lower direct cost. Indirect cost includes all costs not directly contributing to tasks but depending

on the project duration, such as the overhead (e.g., rent, utilities, benefits), interests and financial

costs, delay penalty and order cancellation loss. Normally, a longer project duration is coupled

with a higher indirect cost. We refer the reader to Nahmias (2008)) for more details.
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Figure 2: Project Cost Structure.

Consistent to a majority of practical situations, we assume that direct cost is convex and

decreasing as task duration increases and indirect cost is convex and increasing as project duration

increases (Figure 2, Nahmias (2008)). If task i is delayed by one period, firm i saves si in the direct

cost. If the project is delayed by one period, it suffers a penalty p in the indirect cost. Conversely,

if task i is expedited by one period, firm i incurs a cost ci for expediting. If the project is completed

one period earlier, it receives a reward r.

Project Network. We consider projects with a network structure shown in Figure 3. It has two

levels: At level 1, there are several tasks to be completed simultaneously, similar to the design and

fabrication of subsystems in the 787 Dreamliner program, the writing of individual chapters in a

coauthored book, and the development of subsystems and components of the International Space

Station (ISS). At level 2, there is only one task that is to integrate and assemble all parts completed

in level 1, similar to the system integration task in the 787 Dreamliner program, the integration

and proofreading of a coauthored book, and the final assembly and testing task of the ISS. Clearly
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Figure 3: Project Network.

the task at level 2 cannot start until all tasks at level 1 are completed.

Figure 3 shows the general project network, where n = 1 denotes the case with only one task

at level 1, and thus the project network reduces to two sequential tasks. When n ≥ 2, there are

multiple tasks at level 1, and the project network has an assembly structure. We will discuss these

two cases in the paper.

The Loss Sharing Partnership. In this partnership, each firm pays for the direct and indirect

costs of its own task(s), and get paid when the project is done. We observe that under loss sharing,

if a firm delays its task, it saves on its direct cost but everyone (including the delayed firm) suffers

an increase (a penalty) in indirect cost if the firm’s delay results in a project delay. Thus other

firms on time are penalized by this firm’s delay, and this delayed firm is not fully responsible for the

consequences of its action as the penalty is shared among all firms. While this observation presents

a “moral hazard” issue well known in the economics literature of teamwork, it is not known exactly

how such an issue may affect the time and cost metrics in a project management setting, which is

the focus of this paper.

The Fair Sharing Partnership. This partnership works in the same way as loss sharing except

that every firm is fully responsible for the consequence of its action. Intuitively, if one firm causes

damage to others, it has to compensate others; if it brings benefit to others, it receives compensation

from others; we refer the reader to §5 for the exact mechanisms of this partnership.

Game Theoretical Framework. We assume that each task in the 2-level project network is
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Figure 4: Sequence of Events.

assigned to a different firm. For the ease of exposition, we use “supplier(s)” to name the firm(s)

responsible for the tasks at level 1 and “manufacturer” to name the firm responsible for the task at

level 2. By the structure of the project network, a two-stage game theoretic model is appropriate for

predicting the behaviors of the supplier(s) and the manufacturer in equilibrium. The sequence of

events is described as follows (see also Figure 4): At the beginning of stage 1, supplier(s) start their

tasks and choose task durations. After all suppliers complete their tasks, stage 1 is concluded. At

the beginning of stage 2, the manufacturer starts its task and chooses the task duration. When the

manufacturer completes its task, stage 2 is drawn to an end and the project is completed. In this

game, the suppliers take the lead by taking actions first (anticipating the manufacturer’s response)

and the manufacturer follows by responding accordingly. We assume information symmetry thus

the direct and indirect cost functions of all players are public knowledge. Under either partnership,

each firm aims to maximize its own profit by determining the duration of its own task. We shall

derive subgame perfect Nash equilibrium (SPNE) for each case considered below and compare the

resulting project performance to the global optimum. If the SPNE is not unique, we shall compare

different SPNEs and report the Pareto or strong equilibrium.

Methodology. To understand the firms’ strategic behaviors under loss sharing and how they may

deviate from the optimal decisions under the “one-firm-does-all” (centralized control) model, we

assume that the project starts with an “original schedule” and “original task durations” that are

optimal under the centralized control. We first analyze one-period models in which each firm can

delay or expedite its original task duration by at most one period. Then we relax this constraint
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to allow the firms to delay or expedite multiple periods. To study the impact of cost structure and

project network on the firms’ behaviors, we consider both time-independent and time-dependent

costs, and both one supplier and multi-supplier cases.

4 The Loss Sharing Partnership

In this section, we study firms’ strategic behaviors under the loss sharing partnership. We start

with the base model in §4.1 which assumes only one supplier and time-independent cost. In this

model, each firm can either “keep” the original task duration or “delay” it by one period. In §4.2,

we relax the time-independent cost assumption in the base model to allow time-dependent costs, for

instance, delay penalty per period may increase as the project delay increases. In §4.3, we consider

the base model but allow each firm an additional option of “expediting” its task by one period. In

§4.4, we extend the base model to include multiple suppliers, and in the last subsection, §4.5, we

consider a general model and develop structural results and algorithms for the equilibrium.

4.1 The Base Model – The Prisoners’ Dilemma

In this section, we consider the base model (defined by Assumption 1). Our objective is to under-

stand the impact of collaboration and the loss sharing partnership on the project performance in

both time and cost.

Assumption 1 At level 1 of the project network, there is only one task. Each task cannot be

expedited but can be delayed by at most one period. If the project is delayed, it is subject to a

penalty which is time independent.

In this model, the supplier and manufacturer only have two options (actions) available: “keep”

(keeping the original task duration) or “delay” (delaying it by one period). We use K for “keep” and

D for “delay” for simplicity. We assume that firm i is responsible for task i for i = 0, 1 where firm

1 (or 0) refers to the supplier (or manufacturer, respectively). The action set, [supplier’s action,

manufacturer’s action], is {[K, K], [D, D], [K, D], [D, K]}. When task i is delayed, firm i receives

a saving of si in terms of its direct cost. When the project is delayed, a penalty of p per period in

terms of the indirect cost is shared by the firms, where firm i pays pi and p0 + p1 = p.

Recall that, by assumption, the project starts with an original schedule that is optimal under

the centralized control. In other words, the action set [K, K] has a pay-off higher than those under
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[D, K], [K, D] and [D, D] for the project as a whole. To this end, we need the following necessary

condition,

Condition 1 Global Optimum - Base Model: s1 < p, s0 < p.

We can easily verify Condition 1 as follows: at [K, K], there is neither a saving nor a penalty for

the project, and thus the pay-off of the project relative to the original schedule is zero. At [D, K],

task 1 is delayed by one period but task 0 is kept at its original duration. Thus, we receive a saving

of s1 from task 1 but must pay a penalty of p because the project is delayed by one period. The

pay-off of the project is s1−p and thus s1 < p is a necessary condition for [K, K] to outperform [D,

K] from the project’s perspective. Repeating a similar logic to [K, D] and [D, D] leads to Condition

1.

Now we are ready to study the firms’ strategic behaviors under the loss sharing partnership

and their impact on project performance. Before introducing the general theory, we first present

an example (see Figure 5) to illustrate the key idea and insight. In this example, task 1 has an

original duration of 9 weeks, which can be delayed to 10 weeks with a saving of s1 = $900. Task 0

has an original duration of 5 weeks which can be delayed to 6 weeks with a saving of s0 = $1200.

The project is due in 14 weeks; each week of delay incurs a penalty of p = $1600 for the project.

Clearly, Condition 1 is satisfied in the example, and so it is in the project’s best interests to keep

the original schedule.

Figure 5: An example of the base Model and its pay-off matrix. (K:keep, D:delay)

Under the lost sharing partnership, we assume that upon each week of the project’s delay, the

supplier’s share of the penalty is p1 = $750 and the manufacturer’s share is p0 = $850. To see what
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the supplier and the manufacturer would do in their own best interests (i.e., the equilibrium), we

consider the following four scenarios:

• Win-Lose: firm 1 (the supplier) delays but firm 0 (the manufacturer) keeps its original task

duration. In this scenario, firm 1 saves $900 but must pay $750 with a net gain of $150.

However, firm 0 must pay $850 for firm 1’s delay. The firms’ pay-offs (relative to the original

schedule) are (π1, π0) = (150,−850) and the project’s pay-off is −$700.

• Lose-Win: firm 1 keeps its original task duration but firm 0 delays. In this scenario, firm 0

saves $1200 but must pay $850 with a net gain of $350. However, firm 1 must pay $750 for

the delay caused by firm 0. The firms’ pay-offs are (−750, 350) and the project’s pay-off is

−$400.

• Lose-Lose: both firms delay. In this scenario, the project is delayed by two weeks and the

firms’ pay-offs are (−600,−500). This is the worst scenario for the project as a whole with a

total loss of $1100.

• Win-Win: both firms keep their original task duration. This is the best scenario for the

project where both the firms and the project lose nothing with a pay-off of zero (relative to

the original schedule).

Figure 5 summarizes the action sets and the corresponding pay-off matrix. We can see that

no matter what the supplier does, the manufacturer’s optimal strategy is always to “delay”. In

other words, “delay” is the dominant strategy for the manufacturer. Similarly, the supplier’s best

strategy is also to “delay” regardless of the manufacturer’s response. Thus, although the “Win-

Win” scenario has the best outcome for the project, it is unstable – each firm will find every excuse

to delay. The “Lose-Lose” scenario, although having the worst outcome for the project, is the

subgame perfect Nash equilibrium (SPNE), as in a typical Prisoners’ Dilemma.

We now present the general theory for the base model. Note that in this game, the supplier

leads and the manufacturer follows (see §3). If the project is finished on time, there is no penalty.

For every period of the project delay, the supplier pays a penalty of p1 and the manufacturer pays

the rest which is p0. The firm whichever delays obtains a saving from the direct cost of its own task.

For example, if the supplier delays but the manufacturer keeps the original duration of its task, the

supplier saves s1 from its direct cost which brings its pay-off to be s1 − p1, and the manufacturer

bears a pure penalty of p0. Figure 6 shows the extensive form of the game in the base model.
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Figure 6: The extensive form of the game in the base model.

We derive the following results on the dominant strategies and equilibrium (all proofs of this

paper are presented in the Appendix unless otherwise mentioned).

Lemma 1 (Dominant Strategy): Under Condition 1, when si < pi, “keep” is the dominant

strategy for firm i, i = 0, 1; when si > pi, “delay” is the dominant strategy for firm i, i = 0, 1.

For simplicity, we use “S” (“M”) to denote the supplier (the manufacturer, respectively).

Theorem 1 (Equilibrium): For the base model, under Condition 1, the subgame perfect Nash

equilibrium (SPNE) is given by,

Case Condition on S Condition on M Optimal strategy for S M’s best response

1 s1 < p1 s0 < p0 K K

2 s1 > p1 s0 < p0 D K

3 s1 < p1 s0 > p0 K D

4 s1 > p1 s0 > p0 D D

Based on these results, we present the following key insight for the base model under the loss

sharing partnership:

The Prisoners’ Dilemma: In the base model, for a schedule to be optimal, we need s1 < p, s0 < p

(Condition 1). For the optimal schedule to be the SPNE under loss sharing, a much stronger

condition is required, that is, s1 < p1 and s0 < p0 where p1 + p0 = p. Thus, if s1 > p1 and s0 > p0
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but s1 < p and s0 < p, then it is in each firm’s best interests to delay although being on time benefits

the entire project.

4.2 The Base Model with Time-dependent Costs – The Supplier’s Dilemma

In this section, we relax the “time-independent cost” assumption in the base model to study the

impact of time-dependent penalty costs on the results, e.g., the dominant strategies, the Prisoners’

Dilemma. We define the model by Assumption 2.

Assumption 2 Assumption 1 holds here except that project delay penalties are time dependent.

Let p1 (or p2) be the penalty for the 1st (the 2nd, respectively) period of project delay; and let

p1i and p2i ) be the corresponding penalties shared by firm i, where p11 + p10 = p1 and p21 + p20 = p2.

The assumption of starting with the optimal schedule and the assumptions of convex and increasing

cost functions (see §3) mandate,

Condition 2 (1) Global Optimum - Time-Dependent: s1 < p1, s0 < p1. (2) Monotonicity -

Time-Dependent: p1 < p2, p11 < p21, p
1
0 < p20.

To see the impact of time-dependent penalty costs, we slightly modify the example in §4.1

(shown in Figure 5). In this modified example, everything remains the same except that (1) the

saving per week for task 1 is reduced to s1 = $600 from $900; (2) the second period delay penalty

of the project, p2, is increased to $2500 from $1600, where the supplier bears p21 = $1100 and the

manufacturer bears p20 = $1400. Figure 7 depicts the modified example. Clearly, Condition 2 is

satisfied in this example, and it is in the project’s best interests to keep the original schedule.

We consider the following four scenarios under the loss sharing partnership,

• “Win”-Lose: firm 1 (the supplier) delays but firm 0 (the manufacturer) keeps its original

task duration. In this scenario, firm 1 saves $600 but must pay $750 with a net loss of

$150, while firm 0 must pay $850. The firms’ pay-offs (relative to the original schedule) are

(π1, π0) = (−150,−850) and the project’s pay-off is −$1000.

• Lose-Win: firm 1 keeps its original task duration but firm 0 delays. This scenario is identical

to the “Lose-Win” scenario of the example in §4.1 with the firms’ pay-offs being (−750, 350)

and the project’s pay-off being −$400.
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Figure 7: An example for the base model with time-dependent costs and its pay-off matrix. (K:keep,

D:delay)

• Lose-Lose: both firms delays. In this scenario, the project is delayed by two weeks and the

firms’ pay-offs are (−1250,−1050). This is the worst scenario for the project as a whole with

a total loss of $2300.

• Win-Win: both firms keep. The firms’ pay-offs are (0, 0).

Figure 7 summarizes the action set and the pay-off matrix. Clearly, if the supplier (firm 1) keeps

its original task duration, the manufacturer’s best response is to “delay” because its saving exceeds

its penalty of the 1st period project delay. However, if the supplier delays, the manufacturer’s best

response is to “keep” its original task duration because now its penalty of the 2nd period project

delay exceeds its saving. Thus the supplier has to delay (even at a loss) to raise the penalty so high

that the manufacturer would have to keep, to avoid a greater loss. We call such a phenomenon the

“Supplier’s Dilemma”. It is easy to verify that the SPNE in this example is [D, K].

We now analyze the base model with time-dependent costs in general. We note that the only

difference between this model and the base model in §4.1 is that when both firms delay, the delay

penalty is p1i + p2i for firm i. Figure 8 shows the extensive form of the game between the supplier

and the manufacturer.

We can derive the following results on the dominant strategies and equilibrium.

Lemma 2 (Dominant Strategy): In the base model with time-dependent costs, under Condition

2, when s0 < p10, “Keep” is the dominant strategy for the manufacturer; when s0 > p20, “Delay” is

the dominant strategy for the manufacturer.

16



Figure 8: The extensive form of the game in the base model with time-dependent costs.

Theorem 2 (Equilibrium): For the base model with time-dependent costs, under Condition 2,

the subgame perfect Nash equilibrium is given by:

Case Condition on S Condition on M Optimal strategy for S M’s best response

1 s1 < p11 s0 < p10 K K

2 s1 > p11 s0 < p10 D K

3 p10 < s0 < p20 D K

4 s1 < p21 s0 > p20 K D

5 s1 > p21 s0 > p20 D D

Theorem 2 is similar to Theorem 1 except for one new case (3rd case in Theorem 2): when

p10 < s0 < p20 (also illustrated in the example), the manufacturer’s best strategy depends on the

supplier’s action. If the supplier keeps its original task duration, the manufacturer will delay;

otherwise, the manufacturer will keep its original task duration. Thus, in this case, the supplier

must take the manufacturer’s response into account in making its own decision.

Based on these results, we present the following key insight for the base model with time-

dependent costs under the loss sharing partnership:

The Supplier’s Dilemma: if p10 < s0 < p20, the supplier has to delay (even at a loss) to raise the

penalty too high for the manufacturer to delay, to avoid a greater loss.

17



4.3 The Base Model with Expediting and Reward – The Coauthors’ Dilemma

In this section, we relax the base model by allowing each firm an additional option: expediting

by one period (see Assumption 3). With the new action of “expediting”, the project could be

completed earlier than the original schedule. The question is, will this happen in equilibrium under

loss sharing?

Assumption 3 Assumption 1 holds here except that each task can be expedited by at most one

period, and there is a reward per period if the project is expedited.

We use “E” to denote “expediting”. Let c0 (or c1) be the cost of expediting (i.e., the additional

direct cost) for task 0 (or 1, respectively). Let r be the reward for the project per period expedited,

and r0 and r1 be rewards received by the firms where r1 + r0 = r. When a firm expedites, the pay-

off functions are different from previous sections where firms cannot expedite. Specifically, if the

supplier expedites, the action set [E, K] yields −c1+r1 for the supplier and r0 for the manufacturer,

[E, D] yields −c1 for the supplier and s0 for the manufacturer, and [E, E] yields −c1 + 2r1 for the

supplier and −c0 + 2r0 for the manufacturer. If the manufacturer expedites, the pay-off functions

could be derived in a similar way.

As in all previous sections, we assume that the project starts with an original schedule that

is optimal under the centralized control. To this end, Condition 3 (Global Optimum) provides a

necessary condition. For instance, [E, K] should yield less profit for the entire project than [K,

K], which requires −c1 + r1 + r0 < 0, and [E, D] should yield less profit for the project than [K,

K], which requires s0 < c1. Condition 3 (Monotonicity) comes from the assumption of convex and

increasing indirect cost and convex and decreasing direct cost (see §3). Condition 3 (Loss Sharing)

indicates that the monotonicity condition on the project’s reward and penalty also applies to each

firm’s share of the reward and penalty.

Condition 3 (1) Global Optimum - Expediting: s1 < p, s0 < p; r < c1, r < c0; s1 < c0, s0 < c1.

(2) Monotonicity - Expediting: r < p; s1 < c1, s0 < c0. (3) Loss Sharing - Expediting: r1 < p1,

r0 < p0.

The extensive form of the game is shown in Figure 9. For instance, if the supplier expedites

while the manufacturer keeps its original task duration, the supplier gets an award of r1 but must

pay an expediting cost of c1; the manufacturer gets an award of r0 without any cost.
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Figure 9: The extensive form of the game in the base model with expediting and reward.

We can derive the following results on the dominant strategies and equilibrium.

Lemma 3 (Dominant Strategy): In the base model with expediting and reward, under Condition

3, when si > pi, “delay” is the dominant strategy for firm i, i = 1, 0; when si < ri < pi < ci, “keep”

is the dominant strategy for firm i, i = 1, 0.

Lemma 3 differs from Lemma 1 on the conditions for “keep” because we must consider not only

“delay” but also “expediting” in this model.

Theorem 3 (Equilibrium): For the base model with expediting and reward, under Condition 3,

the subgame perfect Nash equilibrium is given by,
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Case Condition on S Condition on M Optimal strategy for S M’s best response

1 c0 < p0 D E

2 s1 < p1 s0 < p0 < c0 K K

3 s1 > p1 s0 < p0 < c0 D K

4 c1 < p1 s0 > p0 E D

5 s1 < p1 < c1 s0 > p0 K D

6 s1 > p1 s0 > p0 D D

Theorem 3 is similar to Theorem 1 except for the 1st and 4th cases that involve expediting and

have equilibriums of [D, E] and [E, D]. We shall first explain the intuition behind these two new

cases and then discuss the other cases.

• 1st case, c0 < p0, [D, E] is the equilibrium: In this case, the manufacturer faces a delay

penalty that is greater than its expediting cost, and so it would do anything to prevent the

project from being delayed. Taking advantage of the manufacturer’s weakness, the supplier

could delay regardless of its own cost structure, and earn a net saving without any penalty.

Thus, even if the manufacturer expedites its task, the project will not be expedited because

the supplier will delay.

An example in the book publishing industry: Let’s consider a coauthor and a lead

author working sequentially on a textbook. The coauthor writes parts of the book and must

pass on the manuscripts to the lead author to integrate and complete. The lead author is

responsible for the delivery and is very concerned about the deadline. Thus the lead author

will do anything possible to finish the book on time. Knowing this, the coauthor will delay

as much as what the lead author can catch up without a penalty.

• 4th case, c1 < p1 and p0 < s0, [E, D] is the equilibrium: In this case, “delay” is the

dominant strategy for the manufacturer (by Lemma 3). In addition, the supplier faces a delay

penalty that is greater than its expediting cost, and so the supplier will have to expedite to

prevent the project from being delayed.

An example in the academic thesis completion: Let’s consider a PhD student and

his/her advisor. The student shall write the PhD thesis and handle it over to the advisor to

read and approve. The student needs to graduate and will do anything possible to complete

his/her thesis on time. The advisor, on the other hand, is already established and much less
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concerned. Knowing the advisor to be bottleneck, the student has to work extra hard in the

hope of getting the thesis done on time.

• 2nd case, s1 < p1 and s0 < p0 < c0, [K, K] is the equilibrium: In this case, the supplier

cannot be better off by delaying, so it either keeps or expedites its task. If the supplier

keeps, the manufacturer will also keep because either delaying or expediting will make itself

worse off. If the supplier expedites, the manufacturer may delay or keep: delaying renders

the supplier a pure expediting cost while keeping provides the supplier a reward, r1, but still

insufficient to cover its expediting cost because r1 < c1 by Condition 3 (Global Optimum).

So the supplier would choose to keep.

• 3rd case, s1 > p1 and s0 < p0 < c0, [D, K] is the equilibrium: In this case, “delay” is

the dominant strategy for the supplier (by Lemma 3). The manufacturer will choose to keep

because either delaying or expediting makes itself worse off.

• 5th case, s1 < p1 < c1 and s0 > p0, [K, D] is the equilibrium: “delay” is the dominant

strategy for the manufacturer (by Lemma 3). The supplier’s saving from “delay” is less than

the delay penalty, which, in turn, is less than its expediting cost. This fact makes “keep” the

best strategy for the supplier.

• 6th case, s1 > p1 and s0 > p0, [D, D] is the equilibrium: “delay” is the dominant

strategy for both firms.

Theorem 3 implies that in the base model with expediting and reward, the project will never

be expedited in the equilibrium under the loss sharing partnership as compared to the optimal

schedule. We summarize the results in this section by the following dilemma:

The Coauthors’ Dilemma: A firm can expedite its task but cannot expedite the project because

if it expedites, the other will delay; if it delays, the other may or may not expedite.

4.4 The Base Model with Multiple Suppliers – The Worst Supplier Dominance

In this section, we extend the base model to include two suppliers at level 1 to study the impact

of the project network. The analysis of a N-supplier system is similar. The model is defined

in Assumption 4 where suppliers play a simultaneous game among themselves anticipating the

manufacturer’s response to their aggregated actions.
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Assumption 4 Assumption 1 holds here except that level 1 has two tasks each conducted by a

unique supplier, and the manufacturer can only start its task after both suppliers complete their

work.

We denote supplier 1 (2)’s saving in the direct cost from delay to be s1 (s2) per period. The

project penalty shared by the supplier 1 (or 2) is p1 (or p2 respectively) where p1 + p2 + p0 = p. A

necessary condition for the original schedule to be optimal under the centralized control is provided

as follows,

Condition 4 Global Optimum - Two Suppliers: s1 + s2 < p, s0 < p.

Without the loss of generality, we assume that the original durations of tasks 1 and 2 are identical

(otherwise, the system reduces to the base model as we can ignore the supplier with a shorter

duration). The same assumption applies to systems with more than two suppliers which will be

discussed later in the paper.

The extensive form of the game is shown in Figure 10.

Figure 10: The extensive form of the game in the base model with multiple suppliers.

We have the following results on the dominant strategies and equilibrium.
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Lemma 4 (Dominant Strategy): In the base model with two suppliers, under Condition 4,

when s0 < p0, “keep” is the dominant strategy for the manufacturer; when s0 > p0, “delay” is

the dominant strategy for the manufacturer. When si > pi, “delay” is the dominant strategy for

supplier i.

Lemma 4 differs from Lemma 1 because of the assembly-like structure at level 1 – there is no

unilateral condition for a supplier to keep the original duration of its task as the level 1’s on time

performance depends on both suppliers’ actions.

Theorem 4 (Equilibrium): For the base model with two suppliers, under Condition 4, the sub-

game perfect Nash equilibrium is given by,

Case Condition on S Condition on M Optimal strategy for S1, S2 M’s best response

1 s1 < p1 and s2 < p2 s0 < p0 K, K K

2 s1 > p1 or s2 > p2 s0 < p0 D, D K

3 s1 < p1 and s2 < p2 s0 > p0 K, K D

4 s1 > p1 or s2 > p2 s0 > p0 D, D D

Remarks: With two suppliers, the SPNE is no longer unique due to the simultaneous game played

among the suppliers in level 1. For instance, when s0 < p0, the manufacturer keeps its original task

duration, and the pay-off matrix for suppliers 1 and 2 is given by:

1\2 K D

K 0, 0 −p1, s2 − p2

D s1 − p1,−p2 s1 − p1, s2 − p2

Clearly, if s1 < p1 and s2 < p2, both [K, K] and [D, D] are SPNE. We only report [K, K] here

because it is Pareto optimal but [D, D] is not.

Theorem 4 illustrates the impact of the project network on the equilibrium and project perfor-

mance, that is, the project is more likely to be delayed with multiple suppliers. For the original

schedule to be the SPNE, we require s1 < p1 and s2 < p2 (i.e., penalty exceeds saving for both

suppliers) and s0 < p0. If the saving exceeds penalty for any supplier, all suppliers will have to

delay in equilibrium. This observation gives rise to the following key insight:
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The Worst Supplier Dominance: if one supplier delays, the other supplier(s) have to follow.

4.5 The General Model

In previous sections, we reveal many managerial insights from the base model and its extensions. In

this section, we put all the extensions together into a general model where we also allow each firm

to delay or expedite its task by multiple periods (see Assumption 5). The question is, do the results

obtained from the special cases in previous sections (§4.1-4.4), especially the Coauthors’ Dilemma,

still hold in the general model? And how to compute the project schedule in equilibrium?

Assumption 5 The system has multiple suppliers and one manufacturer; each task can be either

expedited or delayed by multiple periods; the cost structure, including penalty, reward, saving and

expediting costs, are time dependent.

We first consider the system with a single supplier. For the ease of exposition, we define the

strategy pair as (x1, x0) where x1 (or x0) is an integer and its absolute value represents the number

of periods expedited or delayed by the supplier (the manufacturer, respectively) relative to the

original schedule. A negative integer means expediting, a positive integer means delaying, and zero

means keeping the original task duration.

In this game, the supplier is the first mover and takes an action x1. Let’s define the manufac-

turer’s best response (to the supplier’s action) to be x∗0(x1). The project duration will therefore be

changed by x1+x∗0(x1). We use superscripts on si, ci, r and p to index the associated periods. For

example, if task i is delayed by two periods, then the total saving should be s1i + s2i where s1i (s2i )

is the saving from the 1st (2nd) period of delay. if task i is expedited by two periods, then c1i (c2i )

is the cost for the 1st (2nd) period of expediting. Lastly, we define π1(x1, x0) (π0(x1, x0)) to be the

pay-off function for the supplier (the manufacturer, respectively).

For this system, Condition 5 (Global Optimum) is necessary for the original schedule to be

optimal under the centralized control; Condition 5 (Monotonicity) comes from the convex increasing

indirect cost and convex decreasing direct cost; finally, Condition 5 (Loss Sharing) indicates that

the monotonicity condition on project reward and penalty also applies to each player’s reward and

penalty.

Condition 5 (1) Global Optimum - General:
∑n

i=0 πi(x1, · · · , xn, x0) ≤ 0 for any xi, i = 0, 1, . . . , n;

(2) Monotonicity - General: rk > rk+1, pk < pk+1, ski > sk+1
i , cki < ck+1

i for any positive integer k
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and any i = 0, 1, . . . , n, and r1 < p1, s1i < c1i for any i = 0, 1, . . . , n; (3) Loss Sharing - General:

rki > rk+1
i , pki < pk+1

i and r1i < p1i for i = 0, 1, . . . , n.

We first characterize the pay-off function for the manufacturer for a given action of the supplier.

Lemma 5 Given x1 = a, π0(a, x0) is a uni-modal function of x0.

Lemma 5 indicates that the manufacturer has a unique best response to each of the supplier’s

actions. The following lemma shows some monotonicity properties of the manufacturer’s best

response function.

Theorem 5 (Monotonicity Property): As x1 increases, x∗0(x1) is non-increasing but x1 +

x∗0(x1) is non-decreasing.

Lemma 5 implies that if the supplier delays more, the manufacturer will delay less, but the project

will be delayed for a longer time.

In the case that the task duration is sufficiently long and so x1 is effectively unbounded from

below, the following theorem specifies a limit by which the supplier would expedite its task.

Theorem 6 (Expedition Limit): There exists a xL = max{x1|x1 + x∗0(x1) = 0} > −∞ such

that if x1 ≤ xL, the supplier will be better off if it increases x1 to xL.

Combining Theorems 5-6, we arrive at the following key insight,

Corollary 1 (The General Coauthor’s Dilemma): No matter by how much each firm expedites

its task, the project will never be expedited in equilibrium under the loss sharing partnership.

For the system with multiple suppliers, we define xs = max{x1, . . . , xn}. We can show that

Theorems 5-6 hold if we replace x1 by xs.

To numerically compute the equilibrium (the SPNE), we design an algorithm which enumerates

x1 between xL and a pre-specified maximum allowable project delay, to find the optimal x∗1 for the

supplier. Here is the key idea: we start by setting x1 = 0. First, we search the region of x1 < 0

until x1 reaches xL (if xL < 0); second, we search the region of x1 > 0 until we reach the maximum

allowable project delay. We keep updating the best π1 found to date and the corresponding x1 and

x0, denoted by (πmax
1 , x∗1, x

∗
0), until the enumeration is completed.
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Let U be the maximum allowable project delay, the implementation details of this algorithm

are described as follows:

Algorithm

• Step 1 - initialization: set x1 ← 0. If s10 < p10, x
∗
0(0) ← 0 otherwise x∗0(0) equals to i that

satisfies si0 > pi0 and si+1
0 < pi+1

0 . Initialize {πmax
1 , x∗1, x

∗
0} with {π1(0, x∗0(0)), 0, x∗0(0)}. Let

k ← x∗0(0).

• Step 2 - search the region of x1 < 0: x1 ← x1 − 1. Find x∗0(x1) by comparing π0(x1, k) and

π0(x1, k + 1): if the former is greater, k remains; otherwise k ← k + 1. Compute π1(x1, k),

and update {πmax
1 , x∗1, x

∗
0} with {π1(x1, k), x1, k} if πmax

1 < π1(x1, k). If x1 + k > 0, repeat

Step 2, otherwise reset x1 ← 0, k ← x∗0(x1) and go to Step 3.

• Step 3 - search the region of x1 > 0: if x1 + k ≤ U , find x∗0(x
′
1) by comparing π0(x

′
1, k) and

π0(x
′
1, k − 1): if the former is greater, k remains the same; otherwise k ← k − 1. Compute

π1(x1, k), and update {πmax
1 , x∗1, x

∗
0} with {π1(x1, k), x1, k} if πmax

1 < π1(x1, k). If x1+k > U ,

stop and output the current {πmax
1 , x∗1, x

∗
0}.

5 The Fair Sharing Partnership

In this section, we present some provisions to enhance collaboration the basic form (i.e., collabora-

tion under the loss sharing partnership); we call the resulting new partnership “fair sharing”. The

fair sharing partnership is designed to have each partner fully responsible for the consequence of

its actions. In principle, if one firm causes damage to other firms, it has to compensate the others.

Conversely, if one firm brings benefits to other firms, it shall receive compensations from the others.

Our objective of this section is to specify the detailed sharing scheme in the fair sharing partnership

for various project networks and cost structures so as to align each partner’s best interest with that

of the project. We shall first revisit the base model (see §4.1) in §5.1 to illustrate the key ideas,

and then present a complete solution for the general model (see §4.5) in §5.2.

5.1 The Base Model Revisited

In this section, we specify the “fair sharing” partnership for the base model (defined by Assumption

1 in §4.1) according to the following principle: if firm i delays, it not only suffers its own share of
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the project delay penalty pi, but also must reimburse firm j (j ̸= i) her share of the penalty pj due

to firm i’s delay. In this way, each firm is fully responsible for the penalty incurred by its delay.

Specifically,

The Fair Sharing Scheme (The Base Model): if both firms keep their original task duration,

no payment is transferred. If only the supplier delays its task, the supplier not only suffers a

penalty of p1, but also pays the manufacturer p0 to compensate her loss due to the supplier’s delay.

Similarly, if only the manufacturer delays its task, the manufacturer suffers a penalty of p0 and

must pay the supplier p1, that is, the supplier’s loss due to the manufacturer’s delay. If both firms

delay, each will compensate the other for the loss caused by its delay, that is, the supplier pays p0

to the manufacturer and the manufacturer pays back the supplier p1. In any event, if a firm delays,

it will pay the full penalty p.

The pay-off matrix is shown in Figure 11. It is obvious that the action set [K, K] is the SPNE

under Condition 1 in §4.1. Thus fair sharing is capable of aligning individual firms’ interests with

that of the project in the base model.

Figure 11: Extensive form of the game in base model under fair sharing.

Extension to Two Suppliers

The system with multiple suppliers complicates the fair sharing partnership. Let’s consider the

base model with two suppliers (defined by Assumption 4 in §4.4) and modify the above sharing

scheme as follows.
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The Fair Sharing Scheme (The Base Model With Two Suppliers): if the manufacturer

delays, it pays p which is the delay penalty of the project. Likewise, if one of the suppliers delays

while the other keeps its original task duration, the delayed supplier pays p. If both suppliers delay,

they split the penalty according to a rationing rule (β1 > 0, β2 > 0) where β1 + β2 = 1 and supplier

1 (2) pays β1p (β2p).

An analysis of the extensive form of the game reveals,

Theorem 7 Consider the base model with two suppliers. Under the fair sharing partnership and

Condition 4, the SPNE is to keep the original schedule (which is optimal under the centralized

control) for any (β1, β2) as long as β1 > 0, β2 > 0 and β1 + β2 = 1.

Note that Theorem 7 holds regardless of the value of βi, i = 1, 0. Thus, the fair sharing partnership

leaves the firms a flexibility in negotiating the contract.

5.2 The General Model Revisited

In this section, we present the details of the fair sharing partnership for the general model (defined

by Assumption 5 in §4.5) and prove its effectiveness. Note that fair sharing can be seen as a way to

redistribute the incremental indirect cost of the project (either reward or penalty) due to schedule

changes among the firms. We denote this incremental indirect cost by B. Under fair sharing, B is

distributed to levels 1 and 2 firms. Suppose that level 1 firms (the suppliers) get A1 and the level

2 firm (the manufacturer) gets A2, then A1 + A2 = B. For the ease of exposition, we also define

xs = max{x1, x2, . . . , xN} where xs represents the change of level 1 completion date as compared

to the original schedule. Using this notation, we specify the fair sharing scheme for the general

model in two steps.

The Fair Sharing Scheme (The General Model):

• Step 1: we decide the payment transferred between the two levels by allocating B to levels 1

and 2. If level 1 completion date is expedited by k periods (xs = −k), level 1 firms shall be

compensated by the rewards (i.e., savings in the indirect cost) for the project for the first k

periods, that is, A1 = r1 + r2 + . . . + rk. If level 1 completion date is delayed by k periods

(xs = k), level 1 firms shall pay the penalty (i.e., the additional indirect cost) for the project

for the first k periods, that is, A1 = p1 + p2 + . . . + pk. After the suppliers’ allocation A1 is

determined, the manufacturer’s allocation A2 = B −A1 accordingly.
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• Step 2: we decide the payment transferred within level 1 firms by allocating A1 among the

suppliers. If level 1 completion date is expedited by k periods (xs = −k), then each supplier

must have expedited its task by at least k periods. A1 is the reward and should be shared

among all the suppliers. If level 1 completion date is delayed by k periods (xs = k), then each

supplier delays its task by at most k periods. A1 is now the penalty and should be shared on

a period-by-period basis among all delayed suppliers. For those suppliers who didn’t delay in

this case, they neither receive any reward nor share any penalty. More details are provided

below.

To see how Step 1 works, we provide an example:

• Case 1: If level 1 is expedited by 5 weeks but level 2 is delayed by 2 weeks, the project is

therefore expedited by 3 weeks. Level 1 firms should be rewarded by r5, r4, . . . , r1, among

which r3, r2, r1 come from the project’s earlier completion, but the rewards r5 and r4 are not

materialized due to the delay at level 2, and so must be paid by the firm (the manufacturer)

at level 2.

• Case 2: If level 1 is delayed by 5 weeks but level 2 is expedited by 2 weeks, the project is

therefore delayed by 3 weeks. Level 1 firms must pay the penalties p1, p2, . . . , p5. However,

p4 and p5 are not materialized by the level 2 firm’s expedition, and so must be paid to the

level 2 firm.

The general pay-off function of the manufacturer (the level 2 firm) is shown in Table 1.

To see how the reward or penalty is shared among the suppliers in Step 2, we show the pay-off

functions of the suppliers in Table 2. In principle, each supplier is only responsible for the penalty

of the periods delayed by itself, and it will not be rewarded if its expedition is not effective – does

not lead to an expedition of level 1 completion date.

The three cases of Table 2 can be explained as follows:

• Case 1: xs < 0. All suppliers share the expediting rewards of |xs| periods. The pay-off for

supplier i is πi = −
∑|xi|

j=1 c
j
i + αi

∑|xs|
j=1 r

j , where αi > 0 for i = 1, . . . , N and
∑N

i=1 αi = 1.

Here αi is supplier i’s ration of the reward.

• Case 2: xs = 0. If supplier i keeps its original task duration, its pay-off is πi = 0; if supplier

i expedites, its pay-off is πi = −
∑|xi|

j=1 c
j
i .
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Level 1 The manufacturer Pay-off of the manufacturer

E: xs < 0

E: x0 < 0
∑|xs|+|x0|

i=|xs|+1 r
i −

∑|x0|
i=1 c

i
0

K: x0 = 0 0

D: x0 > 0
−
∑|xs|

i=|xs+x0|+1 r
i +

∑|x0|
i=1 s

i
0, if xs + x0 ≤ 0

−
∑|xs|

i=1 r
i −

∑|xs+x0|
i=1 pi +

∑|x0|
i=1 s

i
0, if xs + x0 > 0

K: xs = 0

E: x0 < 0
∑|x0|

i=1 r
i −

∑|x0|
i=1 c

i
0

K: x0 = 0 0

D: x0 > 0 −
∑|x0|

i=1 p
i +

∑|x0|
i=1 s

i
0

D: xs > 0

E: x0 < 0

∑|xs|
i=1 p

i +
∑|xs+x0|

i=1 ri −
∑|x0|

i=1 c
i
0, if xs + x0 < 0∑|xs|

i=|xs+x0|+1 p
i −

∑|x0|
i=1 c

i
0, if xs + x0 ≥ 0

K: x0 = 0 0

D: x0 > 0 −
∑|xs|+|x0|

i=|xs|+1 p
i +

∑|x0|
i=1 s

i
0

Table 1: The pay-off function of the manufacturer under fair sharing in the general model.

Level 1 Supplier i Pay-off of supplier i

E: xs < 0 E: xi < 0 −
∑|xi|

j=1 c
j
i + αi

∑|xs|
j=1 r

j

K: xs = 0
E: xi < 0 −

∑|xi|
j=1 c

j
i

K: xi = 0 0

D: x1 > 0

E: xi < 0 −
∑|xi|

j=1 c
j
i

K: xi = 0 0

D: xi > 0
∑|xi|

j=1 s
j
i −

∑|xs|
j=1 β

j
i p

j

Table 2: The pay-off function of suppliers under fair sharing in the general model. Note: (1) αi > 0

and
∑N

i=1 αi = 1. (2) βj
i = 0 if j > xi, otherwise, β

j
i > 0. (3)

∑N
i=1 β

j
i = 1 for all j = 1, 2, . . . , |xs|.

• Case 3: xs > 0. If supplier i expedites, its pay-off is πi = −
∑|xi|

j=1 c
j
i ; if it keeps, its pay-off

is πi = 0; if it delays, its pay-off is πi =
∑|xi|

j=1 s
j
i −

∑|xs|
j=1 β

j
i p

j where βj
i is supplier i’s ration

for the penalty of the jth period delayed. If j > xi (that is, this supplier does not contribute

to the jth period of delay), βj
i = 0; otherwise βj

i > 0 and βj
i satisfies

∑N
i=1 β

j
i = 1 for all

j = 1, 2, . . . , |xs|.

Under this sharing scheme, we have the following result.

Theorem 8 In the general under the fair sharing scheme, “keep” for all firms is the unique SPNE.
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Theorem 8 implies that fair sharing is capable of aligning individual firms’ interests with that

of the project in the general model.

Extension: Starting from A Suboptimal Schedule

So far, we proved the effectiveness of the fair sharing partnership by assuming that the project

starts from an original schedule that is optimal under the centralized control. An interesting

question is, what happens if we relax this assumption and so the project starts from a suboptimal

(or any) schedule?

When starting from an arbitrary schedule, the schedule in equilibrium may differ from the

starting schedule under fair sharing. To see this, let’s consider an example with a single supplier.

Let p1 = 220, p2 = 300, p3 = 400, . . ., s1i = 250, s2i = 200, . . ., and s10 = 280, s20 = 200, . . .. Given

such costs, the original schedule is clearly not optimal. In fact, keeping task 1’s original duration

but delaying task 2’s duration by 1 week is the optimal schedule under the centralized control.

It is easily to verify that the subgame perfect Nash equilibrium is x1 = 1 and x0 = 0 under fair

sharing. Thus, when the project starts from an arbitrary schedule, such a schedule may not be the

equilibrium schedule under fair sharing.

Interestingly, the equilibrium schedule will not worsen the project performance under fair shar-

ing relative to the starting schedule. To see this, let’s consider the suppliers first. By Table 2, a

supplier could always choose “keep” in order to get a zero pay-off regardless of the actions of other

suppliers and the manufacturer. This is true because fair sharing ensures that each partner is fully

responsible for consequences of its actions and so a partner who choose to keep won’t be penalized

by damages caused by others. By a similar logic, the manufacturer can secure a zero pay-off by

choosing “keep” even in such a second mover situation (see Table 1) regardless of the suppliers’

actions. Suppose in equilibrium, a partner’s optimal action is not “keep”, then this partner must

get a positive pay-off because otherwise, it can always choose “keep” to avoid a negative pay-off.

Proposition 1 In the general model under fair sharing, if the project starts from an arbitrary

schedule, all firms can not be worse off in their pay-offs in equilibrium.

6 Conclusions

In this paper, we consider collaborative partnerships in a two-level project management setting

where the workload of the project is spread out to multiple firms (partners). We study the strategic
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behaviors of the firms under the loss sharing partnership in these joint projects by combing the

economics/supply chain gaming models with project management specifics. This paper highlights

the negative impact of collaboration and the loss sharing partnership on the project performance

in both time and cost by discovering exactly why and how they can hurt. We find an inherent

mismatch between individual firms’ best interests and that of the project. Depending on the

project network and cost structure, a firm may be motivated to delay even if doing so harms the

entire project (the Prisoners’ Dilemma); a firm may have to delay (even at a loss) just to prevent

the others from delaying, to avoid a much greater loss (the Suppliers’ Dilemma); and no matter by

how much a firm expedites its task, it cannot expedite the project because other firms will delay

(the Coauthors’ Dilemma). To resolve the incentive issue, we enhance the loss sharing partnership

by a set of provisions with the principle of each firm being fully responsible for the consequences

of its action. We present the exact form of the fair sharing partnership and prove its effectiveness

in aligning the interests of individual firms with that of the project.

Going forward beyond the scope of this paper, research on economics/supply chain and project

management interfaces promises to be fruitful to both practitioners and academicians because of

the high impact on practice, and the potential of exciting theoretical discoveries and insights by

integrating two rich bodies of literature. The potential in coordinating the project-driven supply

chains (or joint projects) has recently been recognized both in academia and in industry. While

there is ample work to be done, we suggest the following future research directions:

1. Empirical Studies: The recent slips of the 787 Dreamliner and Airbus 380 have drawn the

attention of both practitioners and academicians on how to ensure successful innovation by

collaboration. While theoretical models can be built to aid the development of the next

mega project, empirical studies should also be done to discover what really happened in these

programs.

2. Uncertain Task Durations: While deterministic task durations greatly simplify the analysis

and thus allow us to establish clean results on incentives and gaming behaviors in joint

projects, it is of great interest to allow randomness in task durations and to potentially

integrate the economics/supply chain incentive theory with project evaluation and review

technique (PERT).
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Appendix

Proof of Lemma 1

For the supplier with s1 < p1, if the manufacturer chooses “keep”, then 0 > s1 − p1 and so the

supplier will choose “keep”; if the manufacturer chooses “delay”, then −p1 > s1 − 2p1 so that the

supplier will choose “keep” as well. Thus, the supplier has a dominant strategy of “keep” when

s1 < p1. Similarly, we can prove that when s1 > p1, “delay” is the dominant strategy for the

supplier.

For the manufacturer with s0 < p0, if the supplier chooses “keep”, then 0 > s0 − p0 and so

the manufacturer will choose “keep”; if the supplier chooses “delay”, then −p0 > s0 − 2p0 so that

the manufacturer will choose “keep” as well. Thus, the manufacturer has a dominant strategy of

“keep” when s0 < p0. Similarly, we can prove that when s0 > p0, “delay” is the dominant strategy

for the manufacturer. �

Proof of Theorem 1

This theorem is a straightforward result of Lemma 1. �

Proof of Lemma 2

For the manufacturer with s0 < p10, if the supplier chooses “keep”, then 0 > s0 − p10 and so the

manufacturer will choose “keep”; if the supplier chooses “delay”, then −p10 > s0 − p10 − p20 and so

the manufacturer will choose “keep” as well. Thus, the manufacturer has a dominant strategy of

“keep” when s0 < p10. Similarly, we can prove that when s0 > p20, “delay” is the dominant strategy

for the manufacturer. �

Proof of Theorem 2

Lemma 2 implies,

• when s1 > p11 and s0 < p10, the supplier has a dominant strategy of “delay” and the manufac-

turer has a dominant strategy of “keep”.

• when s1 > p21 and s0 > p20, the supplier has a dominant strategy of “delay” and the manufac-

turer has a dominant strategy of “delay”.

When s1 < p11 and s0 < p10, if the supplier chooses “keep”, then the manufacturer will choose

“keep” as 0 > s0 − p10; if the supplier chooses “delay”, then the manufacturer will choose “keep”
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as −p10 > s0 − p10 − p20. The former strategy gives the supplier a higher pay-off (0) than the latter

strategy (s1 − p11) and thus the supplier will choose “keep” and then the manufacturer will choose

“keep”.

When p10 < s0 < p20, if the supplier chooses “keep”, then the manufacturer will choose “delay”

as s0 > p10; if the supplier chooses “delay”, then the manufacturer will choose “keep” as s0 < p20.

The latter strategy gives the supplier a higher pay-off (−p11) than the former strategy (s1− p11) and

thus the supplier will choose “delay” and then the manufacturer will choose “keep”.

When s1 < p21 and s0 > p20, the manufacturer has the dominant strategy of “delay”. Since

−p11 > s1 − p11 − p21, the supplier will choose “keep”. �

Proof of Lemma 3

When s0 > p0, we know that s0 > r0 and r0 < c0 from Condition 3. If the supplier chooses

“expediting” or “keep”, the manufacturer always gets the highest pay-off if it delays. If the supplier

chooses “delay”, because p0 < s0 < c0, “delay” yields the highest pay-off for the manufacturer.

Thus, the manufacturer has a dominant strategy of “delay” in this scenario. Similarly, we can

prove that the supplier has a dominant strategy of “delay” when s1 > p1. By a similar analysis,

we could prove that when si < ri < pi < ci, “keep” is the dominant strategy for firm i, i = 1, 0. �

Proof of Theorem 3

All potential actions are listed below:

S M S’s Pay-off Conditions M’s Best Response M’s Pay-off

E

E 2r0 − c0

K r0 if r0 > s0 K r1 − c1

D s0 if r0 < s0 D −c1

K

E r0 − c0

K 0 if p0 > s0 K 0

D s0 − p0 if p0 < s0 D −p1

D

E −c0
if p0 > s0

if p0 > c0 E s1

K −p0 if p0 < c0 K s1 − p1

D s0 − 2p0 if p0 < s0 D s1 − 2p1

• When p0 < s0, “delay” is the dominant strategy for the manufacturer by Lemma 3. The
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supplier’s pay-off is −c1 with “expediting”, −p1 with “keep”, and s1 − 2p1 with “delay”. We

consider three cases:

– (a) When p1 > c1, the supplier’s optimal strategy is “expediting” because c1 > s1 by

Condition 3(2) and so −c1 is the largest payoff.

– (b) When s1 < p1 < c1, the supplier’s optimal strategy is “keep”.

– (c) When p1 > c1, the supplier’s optimal strategy is “delay”.

• When s0 < p0 < c0 and r0 > s0, “keep” is the dominant strategy for the manufacturer by

Lemma 3. The supplier’s pay-off is r1− c1 with “expediting”, 0 with “keep”, and s1−p1 with

“delay”. We consider two cases:

– (a) When p1 > s1, the supplier’s optimal strategy is “keep” because r1 < c1 by Condition

3(1).

– (b) When p1 < s1, the supplier’s optimal strategy is “delay” because r1 < c1.

• When s0 < p0 < c0 and r0 < s0, there is no dominant strategy for the manufacturer. If the

supplier chooses “expediting”, the manufacturer will choose “delay”. If the supplier chooses

“keep” or “delay”, the manufacturer will choose “keep”. Thus, the supplier’s pay-off is −c1

with “expediting”, 0 with “keep”, and s1 − p1 with “delay”.

– (a) When p1 > s1, the supplier’s optimal strategy is “keep”.

– (b) When p1 < s1, the supplier’s optimal strategy is “delay”.

• When p0 > c0 and r0 > s0, by c0 > s0 (Condition 3(2)) we obtain p0 > s0. If the supplier

chooses “expediting”, the manufacturer will choose “keep”. If the supplier chooses “keep”,

the manufacturer will choose “keep”. If the supplier chooses “delay”, the manufacturer will

choose “expediting”. (Note: the manufacturer will do whatever it could to prevent project

delay.) Given the manufacturer’s optimal response, the supplier’s pay-off is r1 − c1 with

“expediting”, 0 with “keep”, and s1 with “delay”. Since r1 < c1 by Condition 3(1), the

supplier’s optimal strategy is “delay”.

• When p0 > c0 and r0 < s0, by c0 > s0 (Condition 3(2)) we obtain p0 > s0. If the supplier

chooses “expediting”, the manufacturer will choose “delay”. If the supplier chooses “keep”,

the manufacturer will choose “keep”. If the supplier chooses “delay”, the manufacturer will
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choose “expediting”. (Note: the manufacturer will do whatever he could to prevent delay.)

Given the manufacturer’s optimal response, the supplier’s pay-off is −c1 with “expediting”,

0 with “keep”, and s1 with “delay”. Clearly, the supplier’s optimal strategy is “delay”.

Summarizing all cases, we have proved the theorem. �

Proof of Lemma 4

By Lemma 1, the first two results are immediate, that is, when s0 < p0, “keep” is the dominant

strategy for the manufacturer; when s0 > p0, “delay” is the dominant strategy for the manufacturer.

When s1 > p1, an enumerating over all options of supplier 2 and the manufacturer finds that

supplier 1 archives the highest pay-off when it delays. �

Proof of Theorem 4

By Lemma 4, as long as one of the suppliers has a dominant strategy of “delay”, the other has to

delay as well. Otherwise, it suffers a pure penalty. Combining the dominant strategies leads to the

theorem. �

Proof of Lemma 5

When a < 0, we consider three cases:

(1) If x0 ≤ 0, π0(a, x0) = r10 + . . .+ r
|a|+|x0|
0 − c10 − . . .− c

|x0|
0 .

(2) If 0 < x0 ≤ |a|, π0(a, x0) = r10 + . . .+ r
|a|−x0

0 + s10 + . . .+ sx0
0 .

(3) If x0 > |a|, π0(a, x0) = s10 + . . .+ sx0
0 − p10 − . . .− pa+x0

0 .

In case (1), when x0 ∈ (−∞, 0), π0(a, x0) is an increasing function in x0 because r
|x0|
0 < r10 <

c10 < c
|x0|
0 by Condition 5. At x0 = 0, π0(a, 0) > π0(a,−1) because r10 < c10. Thus, π0(a, x0) is a

monotonically increasing function of x0 on x0 ∈ (−∞, 0]. Note that π0(a, 0) = r10 + . . .+ r
|a|
0 . It is

easy to show that when x0 → +∞, π0(a, x0) → −∞. There always exists x0 = x̂0 ∈ [0,+∞) that

maximizes π0(a, x0).

We now show that π0(a, x0) is monotonically increasing in (−∞, x̂0] and monotonically decreas-

ing in [x̂0,+∞). We discuss three scenarios:

1◦, if x̂0 = 0, we have π0(a, 0) > π0(a, 1), indicating that r
|a|
0 > s10. Since both {st0} and {rt0}

are decreasing series in t, we have r
|a|−1
0 > r

|a|
0 > s10 > s20 ⇒ π0(a, 1) > π0(a, 2). By induction, we

could prove that π0(a, x0) is decreasing in [0,+∞).
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2◦, if 0 < x̂0 < |a|, we have π0(a, x̂0) > π0(a, x̂0 − 1) and π0(a, x̂0) > π0(a, x̂0 + 1), indicating

that sx̂0
0 > r

|a|−(x̂0−1)
0 and r

|a|−x̂0

0 > sx̂0+1
0 . Furthermore, as both {st0} and {rt0} are decreasing series

in t, we have sx̂0−1
0 > sx̂0

0 > r
|a|−(x̂0−1)
0 > r

|a|−(x̂0−2)
0 and r

|a|−x̂0

0 > sx̂0+1
0 > sx̂0+2

0 , which lead to

π0(a, x̂0 − 1) > π0(a, x̂0 − 2) and π0(a, x̂0 + 1) > π0(a, x̂0 + 2). We first consider the left side of x̂0

and show π0(a, x0) is monotonically increasing in [0, x̂0] by induction. The induction assumption is

π0(a, x
′
0) > π0(a, x

′
0−1) where x′0 ∈ (0, x̂0). We have π0(a, x

′
0) > π0(a, x

′
0−1)⇒ s

x′
0

0 > r
|a|−x′

0+1
0 ⇒

s
x′
0−1

0 > s
x′
0

0 > r
|a|−x′

0+1
0 > r

|a|−x′
0+2

0 ⇒ π0(a, x
′
0 − 1) > π0(a, x

′
0 − 2). In addition, when x′0 = 1, we

could show that π0(a, 1) > π0(a, 0). Thus, π0(a, x0) is monotonically increasing in [0, x̂0]. Similarly,

we could prove that π0(a, x0) is monotonically decreasing in [x̂0,+∞). Recall that π0(a, x0) is a

monotonically increasing function of x0 on x0 ∈ (−∞, 0], therefore π0(a, x0) is a concave unimodal

function with the peak x0 = x̂0 when 0 < x̂0 < |a|.

3◦, if x̂0 ≥ |a|, by a similar analysis, it is easy to prove that π0(a, x0) is a concave unimodal

function with the peak x0 = x̂0.

In summary, π0(a, x0) is a unimodal function of x0 when a < 0.

The proof for the case of a ≥ 0 is similar and thus omitted. In conclusion, given x1 = a,

π0(a, x0) is a uni-modal function of x0. �

Proof of Theorem 5

We first show that when x1 → −∞, x∗0(x1) > 0 and x1 + x∗0(x1) < 0.

• When x1 < 0, the supplier expedites; the manufacturer will never expedite because a negative

x0 yields r
|x1+x0|
0 < r10 < c10. Consider the manufacturer’s response in three scenarios: (1)

x0 < |x1|, (2) x0 = |x1|, π0(x1, x0) = s10 + . . . + s
|x1|
0 . (3) x0 > |x1|, π0(x1, x0) = s10 + . . . +

s
|x0|
0 − p10 − . . .− px1+x0

0 .

• Scenario (1) yields the highest pay-off for the manufacturer when x1 → −∞. Explanation: In

scenario (3), when x1 → −∞, x0 → +∞ and thus sx0
0 → 0 and px1+x0

0 → +∞. It is clear that

scenario (2) yields a higher pay-off than scenario (3). Next, let x0 = |x1|−1. π0(x1, |x1|−1) =

s10 + . . . + s
|x1|−1
0 + r10. When x1 → −∞, s

|x1|
0 < r10 and thus π0(x1, |x1| − 1) > π0(x1, |x1|).

Hence, when x1 → −∞, x∗0(x1) < |x1|. In other words, when x1 → −∞, x∗0(x1) > 0 and

x1 + x∗0(x1) < 0.

Now we start from x1 → −∞ and increase x1 by one unit each time to see how x∗0(x1) and

x1 + x∗0(x1) will change.

39



When x1 → −∞, x∗0(x1) > 0, x1 + x∗0(x1) < 0, so that π0(x1, x
∗
0(x1)) = s10 + . . .+ s

x∗
0(x1)

0 + r10 +

. . .+r
|x1+x∗

0(x1)|
0 . x∗0(x1) being the best response requires conditions π0(x1, x

∗
0(x1)) > π0(x1, x

∗
0(x1)−

1) and π0(x1, x
∗
0(x1)) > π0(x1, x

∗
0(x1) + 1) which are equivalent to s

x∗
0(x1)

0 > r
|x1+x∗

0(x1)−1|
0 and

r
|x1+x∗

0(x1)|
0 > s

x∗
0(x1)+1

0 . Let x′1 = x1 + 1, to find the manufacturer’s best response, we compare the

following pay-offs as(assuming x∗0(x1)− 2 ≥ 0 and |x1 + x∗0(x1) + 1| > 0):

(1) π0(x
′
1, x

∗
0(x1)− 2) = r10 + . . .+ r

|x1+1+x∗
0(x1)−2|

0 + s10 + . . .+ s
x∗
0(x1)−2

0 .

(2) π0(x
′
1, x

∗
0(x1)− 1) = r10 + . . .+ r

|x1+1+x∗
0(x1)−1|

0 + s10 + . . .+ s
x∗
0(x1)−1

0 .

(3) π0(x
′
1, x

∗
0(x1)) = r10 + . . .+ r

|x1+1+x∗
0(x1)|

0 + s10 + . . .+ s
x∗
0(x1)

0 .

(4) π0(x
′
1, x

∗
0(x1) + 1) = r10 + . . .+ r

|x1+1+x∗
0(x1)+1|

0 + s10 + . . .+ s
x∗
0(x1)+1

0 .

Because r
|x1+1+x∗

0(x1)−2|
0 < s

x∗
0(x1)

0 < s
x∗
0(x1)−1

0 and r
|x1+1+x∗

0(x1)|
0 > r

|x1+x∗
0(x1)|

0 > s
x∗
0(x1)+1

0 , we

have π0(x
′
1, x

∗
0(x1)− 2) < π0(x

′
1, x

∗
0(x1)− 1) and π0(x

′
1, x

∗
0(x1)) > π0(x

′
1, x

∗
0(x1) + 1). We can easily

verify that when x∗0(x1) − 2 = −1 and |x1 + x∗0(x1) + 1| = 0, these inequalities still hold. By the

unimodality property of Lemma 5, x∗0(x1) − 1 ≤ x∗0(x1 + 1) ≤ x∗0(x1). In other words, when x1

increases by one unit, the manufacturer’s best response is to either reduce the corresponding x∗0(x1)

by one unit or keep it the same until x∗0(x1) reaches 0.

At x∗0(x1) = 0, to find the manufacturer’s best response for x′1 = x1 + 1, we still compare four

pay-offs, π0(x
′
1, x

∗
0(x1)− 2), π0(x

′
1, x

∗
0(x1)− 1), π0(x

′
1, x

∗
0(x1)), and π0(x

′
1, x

∗
0(x1) + 1). By the same

logic stated in the previous paragraph, we have x∗0(x1)− 1 ≤ x∗0(x1 + 1) ≤ x∗0(x1) for either x1 < 0

or x1 = 0.

Applying similar approach stated in the previous paragraphs to analyze the rest possible sce-

narios: (1) x1 < 0, x∗0(x1) ≥ 0, x1 + x∗0(x1) ≥ 0; (2) x1 ≥ 0, x∗0(x1) ≥ 0, x1 + x∗0(x1) ≥ 0; (3)

x1 ≥ 0, and x∗0(x1) < 0, x1 + x∗0(x1) > 0, we can always show that when x1 increases by one unit,

the manufacturer’s best response is to reduce the corresponding x∗0(x1) by one unit or keep it the

same.

In summary, for x1 ∈ (−∞,+∞), when x1 increases by one unit, x∗0(x1) will either decrease by

one unit or remain the same and therefore x1 + x∗0(x1) will not decrease. �

Proof of Theorem 6

In the proof of Theorem 5, we have shown that when x1 → −∞, x1 + x∗0(x1) < 0. On the other

hand, when x1 = 0, x∗0(0) should be greater than or equal to 0 so as to guarantee original schedule

to be the global optimum; x1+x∗0(x1) is therefore greater than or equal to 0. From Theorem 5, we
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know that x1 + x∗0(x1) will increase by one unit or hold still each time when x1 increases by one

unit. There must exist xL such that xL = max{x1|x1 + x∗0(x1) = 0, x1 ≤ 0}.

For any x1 < xL and x1 + x∗0(x1) ≤ −1, the supplier’s pay-off is π1(x1, x
∗
0(x1)) = r11 + . . . +

r
|x1+1+x∗

0(x1)|
1 + r

|x1+x∗
0(x1)|

1 − c11 − . . .− c
|x1+1|
1 − c

|x1|
1 . When the supplier expedites one period less,

x1 + 1, the manufacturer’s best response is either x∗0(x1) or x∗0(x1) − 1 by Theorem 5. (1) If the

manufacturer’s best response is x∗0(x1), then the supplier’s pay-off is r11 + . . . + r
|x1+1+x∗

0(x1)|
1 −

c11 − . . . − c
|x1+1|
1 . Note that r

|x1+x∗
0(x1)|

1 ≤ r11 < c11 < c
|x1|
1 by Condition 5(1), the supplier actually

improves its pay-off by increasing x1 to x1+1. (2) If the manufacturer’s best response is x∗0(x1)−1,

the supplier’s pay-off is r11 + . . . + r
|x1+1+x∗

0(x1)−1|
1 − c11 − . . . − c

|x1+1|
1 . The supplier also improves

its pay-off. Therefore the supplier could continuously improve its pay-off by increasing x1 until

x1 + x∗0(x1) = −1.

When x1 < xL and x1 + x∗0(x1) = −1, the supplier’s pay-off is r10 − c11− . . .− c
|x1+1|
1 − c

|x1|
1 . If it

expedites one period less, x1 + 1, the manufacturer’s best response is either x∗0(x1) or x
∗
0(x1) − 1.

The former one yields the supplier a pay-off of −c11 − . . .− c
|x1+1|
1 . Note that r11 < c11 ≤ c

|x1|
1 . The

supplier has a higher pay-off at x1 + 1 than that at x1. The latter one is the same as the case

discussed in the previous paragraph which is shown that the supplier could improve its pay-off from

x1 to x1 + 1. In other words, at x1 + x∗0(x1) = −1, the supplier could also improve its pay-off until

x1 + x∗0(x1) = 0.

When x1 < xL and x1 + x∗0(x1) = 0, the supplier’s pay-off is −c11 − . . . − c
|x1|
1 . If the supplier

expedites one period less, as long as x1 + x∗0(x1) is still equal to 0, the supplier always gets its

pay-off improved.

In summary, xL always exists and for any x1 < xL, we have π1(x1, x
∗
0(x1)) < π1(xL, x

∗
0(xL)). �

Proof of Theorem 7

It is obvious that the manufacturer has a dominant strategy of “keep”. Using a backward induction,

the pay-off matrix between supplier 1 and supplier 2 is:

1\2 K D

K 0, 0 0, s2 − p

D s1 − p, 0 s1 − β1p, s2 − β2p

By Condition 4, [D, K] or [K, D] cannot be the equilibrium because s1 < p and s2 < p. [D, D]

cannot be the equilibrium either because s1−β1p and s2−β2p cannot be larger than 0 at the same
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time, otherwise s1 + s2 < p from Condition 4 is violated. We could verify that [K, K] is the only

equilibrium. Note that we do not have to specify β1 and β2 completely. �

Proof of Theorem 8

Not every supplier would like to expedite because −
∑|xi|

j=1 c
j
i + αi

∑|xs|
j=1 r

j is not positive for every

i, otherwise we violate the assumption that the original schedule is the optimal schedule. So xs ≥ 0

and thus no supplier would like to expedite. On the other hand, no supplier would like to delay

because those suppliers who delayed have to share the penalty. By Condition 5, at least one of

them is losing money. Because this fact applies to any group of suppliers who delay, no supplier

would like to delay and so “Keep” is the dominant strategy for every supplier.

Knowing that suppliers will always keep, the manufacturer’s pay-off is: (1)
∑|x0|

i=1 r
i −

∑|x0|
i=1 c

i
0

if it expedites |x0|; (2) 0 if it keeps; (3) −
∑|x0|

i=1 p
i +

∑|x0|
i=1 s

i
0 if it delays. By Condition 5(1), the

pay-offs in (1) and (3) are all less than 0. Thus, the best strategy for the manufacturer is “keep”.

�
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