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1. Introduction
Many real-world supply chains have complex net-
work structures, which consist of multiple layers of
production and distribution facilities. To cope with
uncertainties in demand and supply, these supply
chains often have many millions of dollars of capital
tied up in inventories (Feigin 1999). One important
question, of course, is how to best manage inven-
tories in complex multistage supply chains, so as
to meet customer expectations with minimum sys-
temwide inventory holding cost.

One way to answer this question is to char-
acterize the optimal inventory policies, which has
been discussed extensively in the inventory con-
trol literature. We refer the reader to Zipkin (2000),
Federgruen (1993), and Porteus (2002) for excellent
reviews. Unfortunately, the optimal policy is not
known for supply chains with general (e.g., tree) net-
work structures.

In practice, many companies employ simple heuris-
tic policies, such as the installation base-stock poli-
cies, to control inventory at each facility (e.g., Lee
and Billington 1993, Graves and Willems 2000, and
Lin et al. 2000). In an installation policy, each facil-
ity only needs the inputs from immediate upstream
and downstream facilities, and makes ordering deci-
sions based on its local order and inventory status.
An important and challenging question for these com-
panies is how to optimally coordinate the installation
policies at all facilities, so as to minimize systemwide
inventory holding cost while meeting the end cus-
tomers’ service requirements. In other words, given
that each facility is managed autonomously by an
installation policy, how can a central planner deter-
mine the policy parameters for all facilities in the best
possible way?

In this paper, we attempt to address this ques-
tion for a class of supply chains with tree structure,
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where each facility (or equivalent, each stage) uses a
continuous-time base-stock policy to control its inven-
tory, external demands follow independent Poisson
processes, and the processing (e.g., production) cycle
times and transportation lead times are stochas-
tic. These assumptions are generally valid in sup-
ply chains that carry expensive items and face low
volume but highly uncertain demand, e.g., service
parts supply chains; see Sherbrooke (1968), Muckstadt
(1973), Graves (1985), and Caglar et al. (2004) for real-
world examples. An excellent literature review is pro-
vided by Axsäter (1993). As demonstrated by Lin et al.
(2000), studies of these models also provide insights
and benchmarks, which may help practitioners sig-
nificantly improve inventory management in other
classes of the real-world supply chains.

It is well known that a base-stock policy is not opti-
mal, in general, for supply chains with a tree structure
(Zipkin 2000). However, it is widely used in prac-
tice partly because it is simple, and therefore eas-
ily implementable, and partly because this policy has
been proven optimal or close to optimal in some spe-
cial but important cases. For instance, in serial sup-
ply chains with zero setup costs and without capacity
constraints, because the installation base-stock policy
is equivalent to an echelon base-stock policy under
certain initial conditions (Axsäter and Rosling 1993),
it is indeed optimal in these cases (Clark and Scarf
1960). In serial systems with zero setup costs but with
finite production capacities, the base-stock policy sub-
ject to capacity constraints, i.e., the modified base-
stock policy, may not be optimal, but the best modi-
fied base-stock policy is still close to optimal (Speck
and van der Wal 1991, van Houtum et al. 1996). We
refer to Parker and Kapuscinski (2004) and Janakira-
man and Muckstadt (2004) for structural results on
the optimal policies in these systems.

Many authors have studied the installation poli-
cies for supply chains with various network topolo-
gies, e.g., multistage serial systems (Simpson 1958,
Hanssmann 1959, Lee and Zipkin 1992), distribution
systems (Sherbrooke 1968, 1986; Axsäter 1993; Graves
1985; Lee and Moinzadeh 1987a, b; Svoronos and
Zipkin 1988, 1991; Schwartz et al. 1985). The majority
of this research follows the “building-block” approach
(Graves 1988); i.e., a building block is typically a

processor plus a stock-keeping facility. The proces-
sor can be anything from a workstation, a group of
workstations, to an entire assembly plant. Assuming
each building block operates independently using a
simple installation policy, one can first characterize
various building blocks, e.g., serial, assembly, or dis-
tribution systems, and then identify the links among
these building blocks. For excellent literature reviews
in this area, we refer the reader to Graves and Willems
(2003b), Axsäter (1993), Diks et al. (1996), and Zipkin
(2000).

Previous research most closely related to ours
includes Lee and Billington (1993), Ettl et al. (2000),
and Graves and Willems (2000). Two distinct mod-
els are studied: the stochastic-service model and the
guaranteed-service model. We refer the reader to
Graves and Willems (2003b) for a thorough compari-
son between the two models. Briefly, in the stochastic-
service model, each stage in the supply chain is
subject to stochastic delays of orders received from its
upstream stages. These delays are due to of stockouts
at the upstream facilities. In the guaranteed-service
model, it is assumed that if stockouts occur, each stage
in the supply chain has external resources other than
the on-hand inventory to serve its downstream facili-
ties, so that the service time is always guaranteed.

Lee and Billington (1993) developed a multi-
stage inventory model based on the stochastic-service
model approach for the Hewlett-Packard DeskJet
printer supply chain with the objective of providing
tools for the managers to evaluate various stock posi-
tioning strategies. Assuming that each stage controls
its inventory by an installation periodic-review base-
stock policy, the authors developed approximations
for the replenishment lead times at all stages of the
supply chain. The authors also called for better mod-
els to more accurately characterize the possibly corre-
lated input delays in the assembly systems.

The stochastic-service model approach is utilized
by Ettl et al. (2000) to analyze supply chains in which
each stage controls its inventory with a continuous-
time base-stock policy. Ettl et al. (2000) differentiated
the nominal lead time and actual lead time at each
stage. The actual lead time will exceed the nomi-
nal lead time if the suppliers are out of stock. The
authors analyzed the assembly systems by assuming
that at most one supplier can be out of stock at any
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time. They derived approximations and bounds on
the expected backorder delays (because of stockouts)
to downstream customers by modeling the replen-
ishment process at each stage as Mx/G/� queue. In
addition to performance evaluation, Ettl et al. (2000)
optimized the total inventory investment, i.e., the
sum of expected work in process and finished goods
inventory, in the supply chain subject to meeting cer-
tain service requirements of the external customers.
Using the safety factors (service levels) as decision
variables, the authors developed analytic expressions
for the gradients, and therefore the constrained non-
linear optimization problem can be solved by the con-
jugate gradient method.

Graves and Willems (2000) applied the guaranteed-
service model approach to tree-structure supply
chains. Instead of base-stock levels or service levels,
planned lead times at all stages are used as the deci-
sion variables. It is assumed that the planned lead
time at each stage of the supply chain is 100% guar-
anteed to the downstream stages, thus the lead time
between every two stages is deterministic. To opti-
mize the safety stock placement, Graves and Willems
(2000) (see also Graves and Willems 2003a) developed
a fast algorithm based on dynamic programming.

This paper follows the stochastic-service model
approach and assumes that each stage controls its
inventory by a continuous-time base-stock policy as
in Ettl et al. (2000). However, we make a different
assumption on the lead times: while Ettl et al. (2000)
modeled the replenishment lead times at all stages by
i.i.d. random variables, we make the “transit times”
assumption (Svoronos and Zipkin 1991) as follows:

Assumption 1.1. The transportation lead times, pro-
cessing cycle times, and replenishment lead times of exter-
nal suppliers are stochastic, sequential, and exogenously
determined.

In particular, the “transit time” satisfies the follow-
ing assumptions: (1) the “transit time” is independent
of the system state, e.g., demand and order place-
ment, (2) the “transit time” is independent across
stages. Under this assumption, order crossing is not
allowed and Palm’s theorem (1938) cannot be applied.
Svoronos and Zipkin (1991) pointed out that the
“transit time” assumption may be more realistic than
the i.i.d. lead-time assumption in some real-world

applications; see Zipkin (2000) for a thorough discus-
sion of these assumptions.

Under the “transit time” assumption, Svoronos and
Zipkin (1991) and Lee and Zipkin (1992, 1995) stud-
ied serial and distribution systems; see also Zipkin
(2000). However, assembly systems pose substantial
challenges because they “are notoriously difficult to
analyze” (Lee and Zipkin 1995).

In this paper, we extend the theory of supply
chains with “transit times” to tree-structure networks,
and present an exact treatment, which is uniformly
applicable to various material flow topologies such
as serial, assembly, and distribution systems. This is
done by utilizing the backward method proposed by
Zhao and Simchi-Levi (2005), which characterized the
performance of assemble-to-order (ATO) systems in
various settings.

We first derive the recursive equations for the back-
order delays at all stages in the tree-structure supply
chains (§3). This allows us to characterize the depen-
dencies of backorder delays across different stages,
including their intricate correlations in the multistage
assembly systems. Based on the recursive equations,
we then discuss (1) the impact of safety stock posi-
tioning in serial, assembly, and distribution systems
and (2) the impact of the correlated delays on multi-
stage assembly systems. We next numerically quantify
the impact of the correlated delays in assembly sys-
tems and develop insights into the conditions under
which the correlations may or may not be ignored
(§4). Using the expected backorder delays as the
decision variables, we modify Graves and Willems’s
(2000) algorithm based on a two-moment approxi-
mation to coordinate the base-stock policies in sup-
ply chains with stochastic sequential lead times (§5).
Finally, through numerical examples (§6), we demon-
strate the effectiveness of the approach, the impact of
stock positioning in serial systems, and the impact of
lead-time uncertainties.

It is perhaps worth mentioning that Assumption 1.1
ignores production capacity constraints. Thus, the
framework developed in this paper can best be
applied only to supply chains with excessive pro-
duction capacities. If production capacities are the
major concerns, then coordinating inventory policies
in multistage supply chains poses a substantial chal-
lenge (van Houtum et al. 1996). Assuming that each
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stage controls its inventory by a modified base-stock
policy, Glasserman and Tayur (1995) developed a
simulation-based optimization algorithm in capaci-
tated serial supply chains. Kapuscinski and Tayur
(1999) extended the methodology to handle more
general networks, and Glasserman and Tayur (1996)
developed simple and fast approximations.

2. The Model
Following Lee and Billington (1993), a node (a facil-
ity or a stage, equivalently) in the supply chain con-
sists of a processor and a stock-keeping location. The
links between every pair of nodes that have a sup-
ply and demand relationship are the lead time (from
the supplier to the customer) and the demand pro-
cess (from the customer to the supplier). Each node
uses a continuous-time base-stock policy to manage
its inventory. We consider supply chains where each
node manages a single final item, one unit of which is
assembled from one unit of possibly multiple differ-
ent components. Note that the model can be extended
to handle cases where multiple units of certain com-
ponents are required to assemble one unit of the final
item. For these components, we need to redefine the
basic flow unit to be the sum of all the units required.

There are three types of lead times associated with
each node in the network: (1) the lead times from the
immediate suppliers, (2) the processing cycle time at
the current node, and (3) backorder delays (or stock-
out delay, equivalently) to the immediate customers.
The backorder delays are the delays due to stockouts
at the current node. The lead time from a particular
supplier is the sum of the transportation lead time
from that supplier and its backorder delay. Finally,
the processing cycle time is the time interval starting
from an item being released into the processor until
the time it completes processing.

The demand process at each node can be deter-
mined by aggregating the bill of materials. Because
external demand follows independent Poisson pro-
cesses, the demand at each node of the network with a
tree structure also follows a Poisson process. Demand
is satisfied on a first-come, first-served (FCFS) basis
at all nodes, and unsatisfied demand at all nodes is
fully backlogged. We assume that the probability dis-
tributions of the lead times from the external sup-
pliers (suppliers outside of the supply chain under

consideration) are known. Finally, the service level
required by the external customers can be specified
by a certain fill rate within a certain committed ser-
vice time.

The following parameters are identified for the
system:

• Characteristics of the supply chain infrastructure:
the probability distributions of the processing cycle
times and the transportation lead times as well as the
replenishment lead times from the external suppliers;
the inventory holding cost at each node.

• Characteristics of the product and demand: bill of
materials, external demand processes, and service
requirements of the external customers.

The supply chain is modeled by a tree graph �� ���

with the node set � and edge set �. We index the
nodes in � from 1� � � � �K; these nodes represent sup-
ply chain stages. An arc in �, denoted by �i� k� ∈ �,
represents a pair of nodes in � that have the sup-
ply and demand relationship. For each node k ∈� , let
nk be a forward index of demand arrivals at node k.
Because our focus is on systems in infinite time hori-
zon, nk ∈ �−�� � � � �−1�0�1� � � � ���. We use the fol-
lowing notation:

• Xk�nk� = the backorder delay at node k for the
demand arrival nk.

• Wk�nk� = the inventory holding time of the cor-
responding item at stage k that satisfies the demand
arrival nk.

• Lk�nk� = the total replenishment lead time at
node k for the order triggered by the demand
arrival nk.

• Pk = the processing cycle time at node k.
• ti� k = the transportation lead time from node i

to k, �i� k� ∈�.
• Sk = the maximum of the lead times from exter-

nal suppliers of node k. If node k does not have an
external supplier, Sk = 0.

• hk = inventory holding cost per item per unit of
time at node k.

• sk = base-stock level at node k.
• �k = demand rate at node k.

By Assumption 1.1, Pk, ti� k, and Sk are statistically the
same for all nk. Thus we suppress their dependence
on nk to simplify the notation.

Throughout this paper, we use the following nota-
tional conventions: a+ =max�a�0� and E�·�, V �·�, and
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��·� are the mean, variance, and standard deviation
of a random variable, respectively.

3. The Framework
In this section, we derive the recursive equations for
the backorder delays in supply chains with a tree
structure. We first focus on the general point demand
processes, and then discuss systems facing indepen-
dent Poisson processes as a special case. Based on the
recursive equations, we develop analytical insights
into safety stock positioning in various supply chain
topologies.

Note that the interarrival time between two consec-
utive demand arrivals can be zero for point demand
processes. In this case, each demand arrival index nk

is associated with a unit demand and represents the
sequence in which the unit demands are satisfied at
node k. For each node k ∈� , we first have the follow-
ing definition:

Definition 3.1. Tk�sk�nk� is the total time if one starts
at the arrival time of demand nk, counts backward until
the number of demand arrivals at stage k reaches sk.

In other words, Tk�sk�nk� is the sum of the interar-
rival times at node k between the demand arrivals nk

and nk −1, nk −1, and nk −2� � � � � up to nk − sk +1 and
nk − sk. Note that Tk�sk�nk� depends on three factors:
(1) the demand process at node k, (2) the base-stock
level sk, and (3) the demand arrival nk.

We assume that an order can be split, i.e., whenever
demand exceeds the inventory on hand, every stage
delivers as much as possible from its on-hand inven-
tory and backorders the rest (a similar assumption is
also made by Zipkin 1991). Now, suppose that the
demand nk arrives at node k at time t; then, accord-
ing to Zhao and Simchi-Levi (2005), the correspond-
ing order of the node k that satisfies this demand
is triggered by the demand arrival nk − sk, which
arrives at node k at time t1 = t−Tk�sk�nk�. This is true
because of the FCFS assumption and the continuous-
time base-stock policy (see Zhao and Simchi-Levi 2005
for more discussions). By the definition of Lk, the total
replenishment lead time of the corresponding order
is Lk�nk − sk�, and therefore it will arrive at node k at
time t1 +Lk�nk − sk�. Hence

Xk�nk� = �Lk�nk − sk�− Tk�sk�nk��
+� (1)

Wk�nk� = �Tk�sk�nk�−Lk�nk − sk��
+� (2)

Clearly, Lk�nk − sk� depends on the supply network of
node k, while Tk�sk�nk� depends on the demand pro-
cess at node k, and therefore the downstream network
structure.

Let node i be an immediate supplier of node k.
Clearly, the order triggered by the demand arrival
nk − sk at node k is a demand at node i. We denote
the index of this demand at node i by ni�nk� to indi-
cate its dependence on the demand nk at node k. Note
that we suppress the dependence of ni�nk� on sk to
simplify the notation. ni�nk� can be a random vari-
able because node i can face demand streams from
nodes other than k. However, if node k is the only
customer of node i, then the indices can be chosen so
that ni�nk�= nk − sk. This is true because node i and k
face the identical demand stream.

If node i has an immediate supplier node j , then
following the same logic, the order triggered by the
demand arrival ni�nk� − si at node i is a demand at
node j , whose index is nj�ni�nk��. Because the sup-
ply chain has a tree structure, we can simplify the
notation nj�ni�nk�� by nj�nk�. In general, we use the
notation nj�nk� to denote the demand arrival at any
upstream node j of node k that corresponds to the
demand arrival nk at node k. See Figure 1 for an
example. If node k receives no supplies from inter-
nal nodes, then it follows from Assumption 1.1 that
the Lk�nk − sk� is statistically the same for all demand
arrivals, and therefore we simplify the notation by Lk.

The key idea of this approach is that for each
external demand arrival, we identify the correspond-
ing order placed at each stage of the supply chain
that eventually satisfies this demand. As we will see,
this approach provides a uniform treatment to vari-
ous supply chain topologies with stochastic sequential
lead times.

3.1. Serial Systems
Consider a serial supply chain with node k supply-
ing node k− 1 for k = 2�3� � � � �K, where node 1 faces
external demand and node K receives external sup-
plies. Because the demand processes are the same for
all nodes in the supply chain, we drop the subscript k
from Tk.

It follows from Equations (1)–(2) that the backorder
delay of node 1 for demand arrival n1 can be charac-
terized by

X1�n1� = �L1�n1 − s1�− T �s1�n1��
+� (3)
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Figure 1 The Demand Arrivals and Their Corresponding Orders in
a Serial System

T(s1, n1)

Demand n1

T(s2, n2(n1))

1

2

Order

T(s1+1, n1)

T(s2–1, n′ (n1))

n2(n1)n′ (n1)2

2

W1�n1� = �T �s1�n1�−L1�n1 − s1��
+� (4)

where

L1�n1 − s1�=X2�n2�n1��+ t2�1 + P1� (5)

Recall that for k = 2� � � � �K − 1, the demand arrival
at node k that corresponds to the external demand
arrival n1 is denoted by nk�n1�. Therefore,

Xk�nk�n1��= �Lk�nk�n1�− sk�− T �sk�nk�n1���
+� (6)

Wk�nk�n1��= �T �sk�nk�n1��−Lk�nk�n1�− sk��
+� (7)

Lk�nk�n1�− sk�=Xk+1�nk+1�n1��+ tk+1� k + Pk� (8)

and

XK�nK�n1�� = �LK − T �sK�nK�n1���
+� (9)

WK�nK�n1�� = �T �sK�nK�n1��−LK�+� (10)

where LK = SK + PK is stochastic, sequential, and
exogenously determined with known probability
distribution.

For convenience, denote n1�n1� = n1. For serial
systems, we can choose the arrival indices at all
nodes in a way such that nk�n1� = n1 − s1 − · · · −
sk−1, k = 2� � � � �K. Then, it is easy to see that
T �sk�nk�n1��, k = 1�2� � � � �K are not overlapping.
Figure 1 provides a visual aid. If external demand
follows a renewal process (of which Poisson is a

special case), then T �sk�nk�n1��, k = 1�2� � � � �K are
mutually independent. Combining this fact with
Assumption 1.1, we can characterize the backorder
delay for any demand at node k by characterizing
XK�XK−1� � � � �Xk+1 sequentially. In this way, the serial
supply chain can be decomposed into K single-stage
systems each with independent replenishment lead
time from the immediate upstream stage. It is perhaps
worth mentioning that for renewal demand processes,
we can suppress the dependence of Xk, Lk, and T on
the index nk, and therefore the recursive Equations (3),
(5), (6), (8), and (9) are identical to Equation (8.3.4)
of Zipkin (2000, p. 304), except that we focus on the
backorder delays instead of the backorders.

We now prove the following general system prop-
erty. Let ≤st stand for stochastic ordering.

Theorem 3.2. Consider two nodes, without loss of gen-
erality, node 1 and 2, in a supply chain with a tree struc-
ture under Assumption 1.1 and the assumption that orders
can be split. Let node 2 be the only supplier of node 1,
and let node 1 be the only customer of node 2. Node 1
faces a point demand process. Suppose s2 > 0, and consider
two stock positions (referred to as SP and SP ′) that sat-
isfy s′2 = s2 − 1 and s′1 = s1 + 1. Define the system with SP

and the system with SP ′ in the same probability space, i.e.,
the same demand streams and the same realizations of lead
times. Then, for any demand arrival n1,

X ′
1�n1�≤st X1�n1�� (11)

For the item that satisfies the demand n1 at stage 1,

W ′
2�n

′
2�n1��+W ′

1�n1�≤st W2�n2�n1��+W1�n1�� (12)

Proof. See Appendix A for a proof. �

Intuitively, this theorem implies that moving one
unit of stock downstream in any two serially linked
nodes results in stochastically shorter backorder
delays at the downstream node and stochastically
shorter total waiting times for any item traveling
through both nodes. This theorem is general because
it applies to any tree-structure supply chain facing
any point demand processes under mild assumptions.

Gallego and Zipkin (1999) pointed out that if the
inventory holding costs are the same across all stages
in the serial systems, safety stock should be located
only at the last stage that faces external demand.
We provide a stronger result as follows: consider a
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K-stage serial supply chain. We refer to a stock posi-
tioning as SP if the base-stock levels satisfy sk > 0 for
some k > 1. We refer to a stock positioning as SP′ if
the base-stock levels satisfy s′k = 0, ∀k �= 1, and s′1 > 0.
The following proposition is based on Theorem 3.2.

Proposition 3.3. Consider the K-stage serial supply
chain under Assumption 1.1 and the assumption that
orders can be split. Let the two stock positions SP and
SP ′ satisfy s′1 =

∑K
k=1 sk. Assume that external demand fol-

lows a point process, and the systems with SP and SP ′ are
defined in the same probability space. Then, for any demand
arrival n1,

X ′
1�n1�≤st X1�n1�� (13)

and for the item that satisfies this demand at stage 1,

W ′
1�n1�≤st

K∑
k=1

Wk�nk�n1��� (14)

Proof. See Appendix A for a proof. �

One direct corollary of Proposition 3.3 is that safety
stock should be positioned only at stage 1 if the
inventory holding costs are the same across all stages.
This result is valid in both the penalty cost model
and the fill-rate constraint model (see Boyaci and
Gallego 2001 for a definition of these models). The
intuition, as illustrated by Theorem 3.2 and Propo-
sition 3.3, is that products can move throughout the
supply chain faster if inventory is kept only at the
most downstream node. Thus, holding inventory only
at stage 1 (stochastically) reduces the total product
waiting times in the system as well as the backorder
delays to the external customers. The magnitude of
the impact of safety-stock positioning in serial supply
chains is quantified in §6.2.

3.2. Assembly Systems
For simplicity, we assume that node k only has inter-
nal suppliers, i = 1�2� � � � � I . The case in which node k

also has external suppliers is discussed at the end
of §3. We make the following assumption as in Song
and Zipkin (2002): when a demand arrives and some
of its required components are in stock but others are
not, we put the in-stock components aside as “com-
mitted stock.”

Suppose that the demand nk arrives at stage k at
time t. Then the corresponding orders of components
that satisfy this demand are triggered by the demand

arrival nk − sk, and they are received by the suppli-
ers i = 1�2� � � � � I at the same time t1 = t − Tk�sk�nk�
with index ni�nk�. It follows from Equation (1) that the
backorder delay of the demand arrival ni�nk� at node i
is Xi�ni�nk��= �Li�ni�nk�− si�− Ti�si�ni�nk���

+, and the
total replenishment lead time at node k is equal to

Lk�nk − sk�

= max
i=1�2�����I

�Xi�ni�nk��+ ti� k�+ Pk

= max
i=1�2�����I

��Li�ni�nk�− si�− Ti�si�ni�nk���
+ + ti� k�+ Pk�

(15)

Clearly, assembly systems are more complicated than
the serial systems, not only because the total replen-
ishment lead time is determined by the maximum of
the lead times from all suppliers, but also because the
backorder delays of the suppliers, Xi�ni�nk��, i ∈ I , are
correlated. To see this, we analyze a simple case in
which node k is the only customer of all its suppli-
ers. Thus ni�nk�= nk−sk, ∀ i = 1�2� � � � � I , and we drop
subscript i accordingly from Ti because all suppliers
face the same demand process. We index the suppli-
ers in a nondecreasing order of their base-stock levels;
then according to Zhao and Simchi-Levi (2005),

T �si�nk−sk�=T �si−1�nk−sk�+T �si−si−1�nk−sk−si−1��

i = 2�3� � � � � I � (16)

To show that this equation is true, we consider two
suppliers i and i′ of node k. If si ≤ si′ , then by Defini-
tion 3.1, T �si′�nk − sk� overlaps with T �si�nk − sk� for
the time period  t1 − T �si�nk − sk�� t1!.

If some suppliers of node k also serve other assem-
bly systems, the analysis becomes much more com-
plicated because one assembly system can order from
more than one supplier and one supplier may serve
one or more assembly systems. The material flow
topology of such a system is similar to that of a mul-
ticomponent and multiproduct ATO system in which
each product may request more than one component
and one component may be requested by more than
one product. We refer the reader to Zhao and Simchi-
Levi (2005) for more discussion of the multicompo-
nent and multiproduct ATO systems. In what follows,
we assume that each assembly node is the only cus-
tomer of its suppliers.

Stock positioning has an impact on the backorder
delays in assembly systems.
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Proposition 3.4. Consider the assembly node k under
Assumption 1.1 and the assumption that orders can be
split. Assume that node k is the only customer of its sup-
pliers i = 1�2� � � � � I and it faces a point demand pro-
cess. Suppose si > 0, ∀ i, and consider two stock positions
(referred to as SP and SP ′) that satisfy s′i = si − 1, ∀ i =
1�2� � � � � I , and s′k = sk + 1. Define the systems with SP

and SP ′ in the same probability space, then, for any demand
arrival nk,

X ′
k�nk�≤st Xk�nk�� (17)

Proof. See Appendix A for a proof. �

This proposition implies that reducing one unit of
stock for all the components, while at the same time
increasing one unit of stock for the finished item at the
assembly node, results in stochastically shorter back-
order delays at the assembly node. However, it is not
clear how to characterize the impact of stock posi-
tioning on the total waiting time of a finished item
at node k and its components at node k and nodes
i = 1�2� � � � � I , because of the extra time that a com-
ponent has to wait at node k for other corresponding
components to be replenished.

We next consider multistage assembly systems.
Suppose each supplier i is, in turn, supplied by other
node(s) in the system. Then Li�ni�nk� − si� in Equa-
tion (15) may be correlated across nodes i = 1�2� � � � � I .
In addition, if si < si′ , then Li�ni�nk�− si� may be cor-
related with T �si′�ni′�nk��.

To demonstrate the intricate correlations in the
multistage assembly systems, we consider the exam-
ple illustrated in Figure 2, which is a nine-stage
production-distribution system with stochastic pro-
cessing times. For ease of exposition, we assume zero

Figure 2 A Multistage Production-Distribution System
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transportation lead times among internal nodes and
zero replenishment lead times from the external sup-
pliers. Consider an arbitrary demand arrival n9 at
node 9, and let its arrival time be t. We index all
the demand interarrival times prior to time t by #n,
n = 1�2� � � � � where #n is the nth interarrival time
if we start at time t and count backward. Applying
Equations (1) and (15), we can characterize X9�n9� as
follows:

X9�n9�= �L9�n9 − s9�− T �s9�n9��
+�

T �s9�n9�=
s9∑

n=1

#n�

L9�n9 − s9�=max�X5�n5�n9���X6�n6�n9���+ P9�

(18)

X5�n5�n9��= �L5�n5�n9�− s5�− T �s5�n5�n9���
+�

T �s5�n5�n9��=
s9+s5∑

n=s9+1

#n�

L5�n5�n9�−s5�=max�X1�n1�n9���X2�n2�n9���+P5�

(19)

X1�n1�n9��= �P1 − T �s1�n1�n9���
+�

T �s1�n1�n9��=
s9+s5+s1∑

n=s9+s5+1

#n�

X2�n2�n9��= �P2 − T �s2�n2�n9���
+�

T �s2�n2�n9��=
s9+s5+s2∑

n=s9+s5+1

#n�

(20)

and

X6�n6�n9��= �L6�n6�n9�− s6�− T �s6�n6�n9���
+�

T �s6�n6�n9��=
s9+s6∑

n=s9+1

#n�

L6�n6�n9�−s6�=max�X3�n3�n9���X4�n4�n9���+P6�

(21)

X3�n3�n9��= �P3 − T �s3�n3�n9���
+�

T �s3�n3�n9��=
s9+s6+s3∑

n=s9+s6+1

#n�

X4�n4�n9��= �P4 − T �s4�n4�n9���
+�

T �s4�n4�n9��=
s9+s6+s4∑

n=s9+s6+1

#n�

(22)

Figure 3 provides a visual aid. It is easily seen
that T �s3�n3�n9�� can be correlated with T �s1�n1�n9��,
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Figure 3 The Correlation Structure of Lead Times in a Multistage
Assembly System
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and therefore it follows from Equations (19)–(22) that
L6�n6�n9� − s6� can be correlated with L5�n5�n9�− s5�.
If s5 > s6, then T �s3�n3�n9�� is correlated with
T �s5�n5�n9��, which implies that L6�n6�n9� − s6� is
correlated with T �s5�n5�n9��. To summarize, the
backorder delays of parallel branches in a multi-
stage assembly system can be correlated. If external
demand follows independent Poisson processes, we
can characterize the joint distribution of the backorder
delays at all nodes by identifying the right overlap-
ping interarrival times.

To analyze the impact of correlated lead times on
system performance, we need the concept of the asso-
ciated random variables. Consider random variables
Y1�Y2� � � � �Yn, and the vector �Y = �Y1�Y2� � � � �Yn�. The
following definition is due to Esary et al. (1967).

Definition 3.5. The random variables Y1�Y2� � � � �
Yn are associated if

Cov %��Y ��&��Y �!≥ 0� (23)

or equivalently

E %��Y �&��Y �!≥ E %��Y �!E &��Y �! (24)

for all nondecreasing real functions %, & for which
E %��Y �!, E &��Y �!, and E %��Y �&��Y �! exist.

We refer to Tong (1980) and Shaked and Shan-
thikumar (1994) for reviews. Associated random vari-
ables have the following important property (see, e.g.,
Esary et al. 1967, Theorem 5.1).

Property 3.6. Let Y1�Y2� � � � �Yn be associated random
variables; then

Pr�Y1 ≤ y1�Y2 ≤ y2� � � � �Yn ≤ yn�≥
n∏

k=1

Pr�Yk ≤ yk�

and

Pr�Y1 > y1�Y2 > y2� � � � �Yn > yn�≥
n∏

k=1

Pr�Yk > yk�

for all y1�y2� � � � � yn.

Proposition 3.7 characterizes the impact of the de-
pendent lead times on the assembly systems. The
proof involves establishing the association of the
backorder delays.

Proposition 3.7. Consider an assembly node k and its
suppliers i = 1�2� � � � � I in a tree-structure supply chain
under Assumption 1.1. If external demand follows inde-
pendent Poisson processes, then for any demand arrival nk

and any ( ≥ 0,

Pr
{

max
i=1�2�����I

�Xi�ni�nk��+ ti� k�≤ (
}

≥ ∏
i=1�2�����I

Pr
{
Xi�ni�nk��+ ti� k ≤ (

}
� (25)

Proof. See Appendix A for a proof. �

The intuition behind this proposition is that the
backorder delays, Xi�ni�nk��, are driven by the com-
mon demand interarrival times; thereby they tend
to “hang on” together. Note that this proposition
does not require the assumption that each assembly
node is the only customer of its suppliers. Combin-
ing this proposition with Equations (15), (1), and (2),
we conclude that a multistage assembly system with
dependent lead times has stochastically shorter delay,
Xk�nk�, and longer waiting time, Wk�nk�, at each
assembly node k than the delay and waiting time in
a corresponding system where the dependence of the
lead times are ignored.

3.3. Distribution Systems
Consider a distribution node k with customer nodes
j = 1�2� � � � � J . For the demand arrival nj at node j , it
follows from the same logic as in serial systems that

Xj�nj� = �Lj�nj − sj �− Tj�sj�nj��
+� (26)

Wj�nj� = �Tj�sj� nj�−Lj�nj − sj ��
+� (27)
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where

Lj�nj − sj � = Xk�nk�nj��+ tk�j + Pj� (28)

Xk�nk�nj�� = �Lk�nk�nj�− sk�− Tk�sk�nk�nj���
+� (29)

Wk�nk�nj�� = �Tk�sk�nk�nj��−Lk�nk�nj�− sk��
+� (30)

where Lk�nk�nj�− sk� depends on the supply network
of node k.

Note that Tk�sk�nk�nj�� is based on the superposi-
tion of the demand processes of all customer nodes,
while Tj�sj�nj� is based on the demand process of cus-
tomer node j only. If external demand follows inde-
pendent Poisson processes, then it follows from the
fact that Tj�sj�nj� does not overlap with Tk�sk�nk�nj��,
that Tj�sj�nj� is independent of Tk�sk�nk�nj��. In addi-
tion, Tk�sk�nk� is statistically the same for every nk ∈
�−�� � � � �−1�0�1� � � � ��� because the superposition
of independent Poisson processes is still a Poisson
process.

In practice, most companies locate their warehouses
closer to retail outlets than to manufacturing facilities.
Proposition 3.8 provides a justification for this phe-
nomenon from the inventory perspective.

Proposition 3.8. Consider a supply chain in which
node i is the only supplier of node k, and node k is the
only supplier of nodes j = 1�2� � � � � J . Each node j faces
a point demand process, which may be correlated across
j = 1�2� � � � � J . Assumption 1.1 holds and orders can be
split. Assume deterministic transportation lead times, and
consider two locations of node k that satisfy

ti� k + tk� j = t′i� k + t′k� j (31)

and

t′k� j < tk� j (32)

for a certain node j . Define the supply chain with different
locations in the same probability space, and keep the base-
stock levels at all nodes the same for both locations. Then,
for any demand arrival nj at node j ,

X ′
j �nj �≤st Xj�nj�� (33)

and for the item that satisfies this demand at node j ,

W ′
k�nk�nj��+W ′

j �nj �≤st Wk�nk�nj��+Wj�nj�� (34)

Proof. See Appendix A for a proof. �

Intuitively, Proposition 3.8 shows that keeping the
stock levels at all facilities the same and keeping the
total transportation lead times between the manufac-
turer and retail outlets unchanged, then the closer the
distribution facility to the retail outlets, the (stochas-
tically) shorter the backorder delays to external cus-
tomers and the (stochastically) shorter the time any
item stays in the system.

To study the impact of stock positioning in distribu-
tion systems, we analyze a simple case in which the
customer nodes are identical; i.e., they face identical
demand processes, and have identical transportation
lead times tk� j and base-stock levels sj for all j =
1�2� � � � � J . Assuming sj > 0, ∀ j , we consider two stock
positions (referred to as SP and SP′) that satisfy s′j =
sj − 1, ∀ j = 1�2� � � � � J , and s′k = sk + J , that is, mov-
ing one unit of stock from each customer node to the
distribution node. In this system, however, stochas-
tic inequalities similar to those established in Theo-
rem 3.2 do not hold because of the risk-pooling effect.
Indeed, a numerical study (not reported here) shows
that moving stock upstream can reduce the expected
backorder delays to the external customers.

3.4. Systemwide Properties
Proposition 3.9 characterizes an important property
for every node in the supply chain.

Proposition 3.9. Under Assumption 1.1 and the
assumption of independent Poisson demand processes,
Lk�nk − sk� is independent of Tk�sk�nk� for any demand
arrival nk at every node k ∈� .

Proof. Consider an arbitrary node k ∈ � . Suppose
a demand arrival nk is realized at time t. Then the cor-
responding order is placed at time t − Tk�sk�nk�. Fur-
thermore, the total replenishment lead time at node k,
Lk�nk − sk�, for this specific order is determined by
the demand interarrival times prior to t − Tk�sk�nk�

as well as the processing cycle times, transportation
lead times, and replenishment lead times from exter-
nal suppliers. The assumption of the independent
Poisson processes implies that nonoverlapping inter-
arrival times are independent. Therefore it follows
from Assumption 1.1 that Lk�nk − sk� is independent
of the Tk�sk�nk� for every nk at every k ∈� . �
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Combining Proposition 3.9 with the recursive equa-
tions in §§3.1–3.3, it is possible to exactly character-
ize the joint probability distribution of the backorder
delays in tree-structure supply chains with stochastic
sequential lead times when the external demand fol-
lows independent Poisson processes and each assem-
bly node in the network is the only customer of
its suppliers. Observe that the backorder delays are
determined by the “transit times” and the demand
interarrival times; it follows from Assumption 1.1
and the assumption of independent Poisson processes
that the Lk, Tk, Xk, and Wk are statistically the same
for all demand arrivals nk at each node k ∈ � . This
is true because the reversed Poisson processes are
still Poisson and independent of the starting time
(Kulkarni 1995). For the rest of this paper, we focus on
independent Poisson demand processes, and thereby
drop the index nk from these random variables with-
out causing any confusion.

Because of the correlations of the backorder delays
in multistage assembly systems, an exact characteriza-
tion (unless it is based on Monte-Carlo simulation) of
the system performances poses a significant analytical
and numerical challenge. To improve computational
efficiencies, we present approximations in the next
section. We also study the accuracies of the approxi-
mations by comparing them to a fast simulation based
on the exact recursive equations.

To summarize, the backorder delay at each node, X,
is fully determined by the total replenishment lead
time, L, base-stock level, s, and the demand process.
Conversely, given L, E�X�, and the demand process, s
is also fully determined (because of the monotonic
relationship between s and E�X�). Thus, given sk or
E�Xk� at all nodes k ∈� , the steady-state performance
of a supply chain with tree structure is completely
determined. By Little’s law, the steady-state aver-
age inventory level, E�Ik�, at node k for finish goods
satisfies

E�Ik� = �k ×E�Wk�

= �k ×E��Tk�sk�−Lk�
+�

= �k × �E�Tk�sk��−E�Lk�+E�Xk��� (35)

If an assembly node k has both internal and external
suppliers, then

Lk =max�Xi + ti� k� ∀ �i� k� ∈�*Sk�+ Pk� (36)

Observe that a component may need to stay at an
assembly node without being processed before all
other corresponding components arrive; thus it incurs
inventory holding costs. To determine the steady-state
average inventory level, E�I i

k�, at an assembly node k
for a component i, ∀ �i� k� ∈�, it follows from Little’s
law and Equation (36) that

E�I i
k� = �k×E�max�Xj +tj�k�∀ �j�k�∈�*Sk�−Xi−ti�k�

= �k ×E�Lk − Pk −Xi − ti� k�� (37)

We only focus on the expected holding costs for
inventories Ik and I i

k at all nodes, because the expected
inventories carried during the transportation lead
times and processing cycle times are constants.

4. Approximations
The objective of this section is to develop and test
tractable approximations. More numerical studies are
conducted in §6 to test the accuracy of the approxi-
mations in various examples.

4.1. The Lead-Time Correlations
In this section, we quantify the impact of the cor-
related lead times on system performances, and
develop insights into the conditions under which the
correlations may or may not be ignored using simple
but representative examples.

For this purpose, we consider an assembly node k
and its suppliers i = 1�2� � � � � I . For simplicity, we
assume that the total replenishment lead times at
the suppliers, Li, are mutually independent and also
independent of the system state. We focus on the
cases where node k is the only customer of its sup-
pliers because the correlations among the suppliers’
delays, Xi, i = 1�2� � � � � I , tend to be weaker if some
of the suppliers also serve other customers. This is
true because the correlation is due to the correlated
demand processes at the suppliers (see, e.g., Equa-
tion (16)). If node k is the only customer of its
suppliers, the demand processes at the suppliers are
identical, and therefore completely correlated. On the
other hand, if supplier i only serves node k but sup-
plier i′ also serves other nodes, then the demand pro-
cesses at the suppliers i and i′ are not identical, and
thereby less correlated. By Equation (15), we have

Lk = max
i=1�2�����I

��Li − T �si��
+ + ti� k�+ Pk� (38)
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where si is the base-stock level at supplier i, i =
1�2� � � � � I , and we drop the subscript i from Ti

because of the identical demand process. To high-
light the impact of the correlations among T �si�, i =
1�2� � � � � I , we assume Pk = 0 and ti� k = 0, ∀ i.

To quantify the impact of the correlations in this
system, we focus on the absolute percentage errors
in E�Lk� and ��Lk� between systems with correlated
lead times and systems with independent lead times.
For instance, the absolute percentage errors in E�Lk� is
defined as the absolute difference between the E�Lk�’s
in the two systems divided by E�Lk� in the system
with correlated lead times. To generate a sample of Lk

with correlated lead times, we utilize Equation (16); to
generate a sample of Lk with independent lead times,
we sample T �si� independently.

Without loss of generality, let �k = 1. We assume
that Li follows an Erlang distribution with param-
eters +i and ni (see Zipkin 2000 for a definition)
because it is a special case of both Gamma and con-
tinuous phase-type distributions, and is often used in
practice to model lead times (Zipkin 2000). Thus the
following nondimensional parameters may have an
impact on the absolute percentage errors: I , ni (where
��Li�/E�Li� = 1/

√
ni) and �kE�Li�/si, i = 1�2� � � � � I .

In the numerical study, we mainly focus on I and
E�Li�/si (because �k = 1).

To construct a test instance, we first generate si

randomly according to �Uniform�0�10�� distribution,
and then generate E�Li� randomly according to
,×Uniform�0�10�, where , is a scaling factor rep-
resenting the average ratio between E�Li� and si

across all i. Clearly, the greater the ,, the higher
the E�Xi�/E�Li�, and the lower the fill rates at the
suppliers. For a given ni, we compute +i = ni/E�Li�

and ��Li� = E�Li�/
√

ni. For any combination of the
nondimensional parameters , = 0�4�0�8�1�4�2, and
I = 2�4�8�16, we generate 100 sample systems by ran-
domly choosing si and E�Li�. For each sample system,
we simulate 10,000 runs with or without considering
the correlations, and calculate the absolute percentage
error in E�Lk� and ��Lk�. Finally, we take the average
of the absolute percentage errors over the 100 sample
systems.

A numerical study shows that E�Lk� increases as
we switch from systems with correlated lead times to
corresponding systems with independent lead times,

Figure 4 The Impact of the Lead-Time Correlations on E�Lk � and � �Lk �
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which confirms Proposition 3.7. Figure 4 shows the
case of ni = 5, ∀ i. The cases of ni = 1�3�7 are also
studied (not reported here). Summarizing all the
numerical results, we observe that

• Ignoring the correlations may result in relatively
large errors in both E�Lk� and ��Lk� (about 10% error)
when , is relatively small; e.g., ,= 0�4, where the fill
rates are around 80% in the numerical examples.

• When , is relatively large, e.g., ,= 2, where the
fill rates are around 30% in the numerical examples,
the percentage errors may be relatively small, i.e., no
more than 3%.

These observations are intuitive because as , in-
creases, E�Li�, i ∈ I increase and it follows from equa-
tion Xi = �Li − T �si��

+ that the correlation between
Xi and Xj , i� j = 1�2� � � � � I becomes weaker because
Li, i = 1�2� � � � � I are mutually independent. On the
other hand, there is no clear trend in the relationship
between the percentage errors and the number of sup-
pliers, I . That is, in some cases as the number of the
suppliers increases, the error also increases; while in
others, the error decreases.

Note that the numerical study is conducted at
Pk = 0 and ti� k = 0 for all i. It follows from Assump-
tion 1.1 that when Pk is substantial with respect
to Ti, the percentage errors of ignoring the correlations
should be much smaller in all cases. Clearly, if ti� k, ∀ i

are also positive, then the percentage errors should
be even smaller. The numerical study implies that the
lead-time correlations may not be ignored in systems
where the transportation and processing lead times
are negligible relative to Li, e.g., the ATO systems
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(Song and Zipkin 2002). However, the errors become
more tolerable as the transportation and processing
lead times increase.

4.2. Two-Moment Approximations
Computing the probability distribution of the back-
order delay at each stage of a supply chain is time
consuming, especially for the purpose of system opti-
mization. To further improve the computational effi-
ciency, we utilize two-moment approximations, which
have been studied extensively in inventory systems.
We refer to Axsäter (1993) for a review of two-
moment approximations in distribution systems.

We utilize the approach by Graves (1985) and
Svoronos and Zipkin (1991). In particular, given the
total replenishment lead time L (E�L� and V �L�),
demand rate �, and base-stock level s, we compute
the backorder delay X (E�X� and V �X�) as follows:
(1) Compute the first two moments of the lead-time
demand by E�L�, V �L�, and the demand process at
each stage. (2) Fit the lead-time demand distribu-
tion by a negative-binomial distribution that matches
the first two moments. (3) Calculate the first two
moments of the backorder at the base-stock level s.
(4) Find the mean and variance of the backorder delay
by the first two moments of the backorder and the
demand process. We refer the reader to Svoronos and
Zipkin (1991) for a thorough discussion.

Conversely, given E�X�, the total replenishment
lead time L (E�L� and V �L�), and demand rate �, we
can calculate s and V �X� as follows: Steps (1) and (2)
of the above procedure remain the same, (3) calcu-
late s using the lead-time demand distribution and
E�X�, (4) compute the variance of the backorder using
the base-stock level, and (5) compute the variance of
the backorder delays. For assembly nodes, we use the
two-moment approximation by Clark (1961) to calcu-
late the mean and variance of the maximum of inde-
pendent random variables.

Define �Xk to be a vector representing the backorder
delays of the immediate suppliers of node k; i.e., �Xk =
�Xi � �i� k� ∈��. For any node k ∈� , given the follow-
ing parameters: the mean and variance of �Xk (E��Xk�

and V ��Xk�), the average backorder delay E�Xk�, and
demand rate �k, we can determine the mean and vari-
ance of Lk by Equation (36), the safety stock carrying
costs at node k, denoted by Hk�E��Xk��V ��Xk��E�Xk��,

as well as the variance of the backorder delay, V �Xk�.
In particular,

Hk�E��Xk��V ��Xk��E�Xk��=hkE�Ik�+
∑

�i�k�∈�
hiE�I i

k�� (39)

where E�Ik� and E�I i
k� are defined by Equations

(35)–(37). For convenience, denote

V �Xk�= fk�E��Xk��V ��Xk��E�Xk��� (40)

5. Optimization
By using E�Xk�, k = 1�2� � � � �K as decision variables,
we can formulate the following program:

P min
K∑

k=1

Hk�E��Xk��V ��Xk��E�Xk��

s.t. V �Xk�= fk�E��Xk��V ��Xk��E�Xk��� ∀k ∈� �

Lk =max�Xi + ti� k� ∀ �i� k� ∈�*Sk�+ Pk�

∀k ∈� �

0≤ E�Xk�≤min�Qk�E�Lk��� ∀k ∈� �

V �Xk�≤ �2
k � ∀k ∈� �

Pr�Xk ≤ (k�≥ 0k�

for node k serving external customers�

We assume that the service requirements, (k and 0k,
are specified by the external customers, and the dis-
tributions of Sk, k ∈� are known.

Program P can be explained as follows: the first
constraint specifies the variance of the backorder
delay, the second constraint relates the total replen-
ishment lead time at node k to the backorder delays
of the immediate upstream nodes, as well as the
lead times from the external suppliers. The third and
fourth constraints restrict the feasible regions for E�X�

and V �X�, and the last constraint specifies the ser-
vice requirements of the external customers. Qk and
�2

k are the maximum allowable expected backorder
delay and delay variance at node k, respectively. More
specifically, they are determined by the minimum of
the most tolerable expected delays and delay vari-
ances among the customers of node k.

If node k serves external demand, then Xk is subject
to the service constraint, Pr�Xk ≤ (k� ≥ 0k. It follows
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from Equation (1) that we can rewrite the service con-
straint as Pr�Lk − Tk�sk� ≤ (k� ≥ 0k. We fit Lk − Tk�sk�

by a normal random variable, and therefore the con-
straint becomes

E�Lk�− sk/�k + z1−0k

√
V �Lk�+ sk/�

2
k ≤ (k� (41)

Evidently, program P is not linear. Graves and
Willems (2000) developed an algorithm based on
dynamic programming to optimize safety stock posi-
tioning in supply chains with guaranteed service time
(see also Graves and Willems 2003a). We generalize
their algorithm so as to coordinate stock levels in sup-
ply chains with stochastic sequential lead times. The
difference between their algorithm and the algorithm
developed in this paper is that we focus on the mean
and variance of the stochastic service times, while
Graves and Willems (2000) focus on the guaranteed
service times. We refer the reader to Appendix B for
the algorithm, an example, and some implementation
details.

6. Numerical Studies
The objective of this section is twofold: (1) testing the
accuracy of the approximations and the quality of the
solution found by the dynamic programming (DP)
algorithm and (2) developing insights with respect
to stock positioning and the impact of the lead-time
uncertainties.

6.1. Effectiveness of the Approach
The first example is the multistage system in Figure 2
with only a subset of the nodes, i.e., � = �1�2�5�6�9�.
All other nodes are regarded either as external suppli-
ers or external customers. For simplicity, we assume

Table 1 Comparison Between the Approximation and the Simulation for the DP Solutions

Target �9 Actual �9 Difference in Cost Cost Absolute percentage
�9 (%) (simulation) fill rates (%) (approximation) (simulation) difference in costs (%)

2 99 96	75%± 0	35% 2	25 49.64 50	19± 0	36 1.11
2 95 92	79%± 0	51% 2	21 37.91 38	99± 0	32 2.77
2 90 90	19%± 0	58% 0	19 32.57 33	63± 0	29 3.14
2 80 83	54%± 0	73% 3	54 27.47 28	19± 0	26 2.55
0 95 92	83%± 0	51% 2	17 44.14 45	11± 0	34 2.15
4 95 92	50%± 0	52% 2	5 32.57 33	62± 0	29 3.13
6 95 92	79%± 0	51% 2	21 26.13 26	73± 0	26 2.27
8 95 92	04%± 0	53% 2	96 21.85 22	33± 0	23 2.12

zero external lead times and zero transportation lead
times, but nonzero processing cycle times at all nodes.
Nonzero transportation lead times are considered
in §6.3. The stochastic processing times follow Erlang
distributions. Without loss of generality, let �9 = 1,
h1 = h2 = 1, h5 = 2, h6 = 1�5, and h9 = 3. Note that
inventory holding costs are increasing as one moves
downstream in the supply chain.

To test the accuracy of the approximations, we first
used the DP algorithm to find a solution and then
used the Monte-Carlo simulation, which is based
on the exact recursive equations in §3 to evaluate
the solution. In the simulation, we ran 104 indepen-
dent replications for each problem instance and calcu-
lated the 95% confidence interval for the performance
measures.

Two studies are conducted. First, we set the
lead-time parameters as follows: �n1�n2�n5�n6�n9� =
�7�9�2�2�9� and �E�P1��E�P2��E�P5��E�P6��E�P9�� =
�10�3�9�3�3�, and vary (9 and 09. For each parameter
set, we use the DP algorithm to determine the base-
stock level at each node and then use simulation to
estimate the performance of this solution. Specifically,
column “Actual 09 (simulation)” in Table 1 presents
the simulated service level at node 9 to the down-
stream facilities. Column “Cost (approximation)” is
the cost generated by DP, while “Cost (simulation)” is
generated by simulation. In the last column of Table 1,
the absolute percentage difference in cost is defined
as the absolute difference between the simulated cost
and the cost generated by DP divided by the simu-
lated cost.

Second, we set 09 = 95% and (9 = 4, and randomly
generate 100 systems with different lead-time param-
eters, where ni ∼ Uniform�1�2� � � � �10� and E�Pi� ∼
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Uniform�1�10�. Numerical results show that the aver-
age absolute percentage difference (between the sim-
ulation and the approximation) in cost is 1.79%, with
a maximum of 5.86%; while the average absolute dif-
ference between the target 09 and the simulated 09 of
the DP solution is 1.76%, with a maximum of 5.02%.

Given the fact that we only consider the first two
moments of the lead times, as well as the other
approximations detailed in §§4 and 5, the numeri-
cal study implies that the approximations are reason-
ably accurate for a fairly wide range of parameters.
Additional studies (not reported here) show that the
percentage errors are even smaller when the trans-
portation lead times are nonzero.

A closer examination of the 100 randomly gener-
ated systems reveals that the least accurate cases have
the smallest E�P9� over the average processing time of
all nodes as well as the smallest ni for all i. This is con-
sistent with the observations made in §4: The smaller
the E�P9� over the average processing time, the larger
the impact of the errors in backorder delays in the last
stage, and therefore the approximations may not per-
form well. To explain the impact of ni on the accuracy
of the approximations, we note that the larger the ni,
the more accurately the normal distribution fits the
processing times. Conversely, when ni is small, nor-
mal distribution is not a good fit, and when ni = 1,
the processing times follow exponential distributions.
Thus the normal approximation of the fill-rate con-
straints and Clark’s (1961) two-moment approxima-
tion, which applies to normal random variables, may
yield sizeable errors for small ni. Finally, we observe
that the simulated fill rates of the DP solution may not
closely match with the targets. To generate near opti-
mal and feasible solutions, we can adjust the input fill

Table 2 Comparison Between the Solutions Found by the DP and Search Algorithm


s1� s2� s5� s6� s9 Percentage
Cost Cost difference

E�P9� 
n1� n2� n5� n6� n9 The DP solution The search solution (DP) (search) in costs (%)

7 
1�2�3�2�1 
0�0�1�0�25 
0�0�2�0�25 41	89± 0	39 42	71± 0	4 −1	92
7 
2�4�5�4�2 
0�0�1�0�21 
1�0�4�3�18 28	65± 0	32 29	14± 0	32 −1	68
7 
4�7�9�8�4 
0�0�5�3�15 
1�1�5�4�14 20	99± 0	26 20	625± 0	26 1	77
7 
6�10�13�11�6 
0�0�5�3�14 
2�1�1�1�16 17	58± 0	24 17	05± 0	23 3	11
1 
1�2�3�2�1 
0�0�9�6�7 
5�4�2�5�9 27	4± 0	24 27	50± 0	24 −0	36
1 
2�4�5�4�2 
3�2�5�4�6 
4�3�4�6�5 18	3± 0	19 17	87± 0	19 2	4
1 
4�7�9�8�4 
0�0�7�5�4 
3�3�3�4�5 12	39± 0	15 12	28± 0	15 0	9
1 
6�10�13�11�6 
0�0�6�5�4 
0�0�5�4�5 10	67± 0	14 10	51± 0	14 1	6

rates and run the DP algorithm repetitively until the
target fill rates fall into the 95% confidence interval of
the simulated fill rates.

To test whether the DP solution is indeed opti-
mal or close to optimal, we continue with the same
example and compare the DP solution to a solu-
tion found by a simulation-based search algorithm.
In the search algorithm, we first identify an upper
bound s̃k for the base-stock level at each node.
Then, for any base-stock level vector �s1� s2� s5� s6� ∈⊗

k=1�2�5�6�0� �s̃k/10�� �2s̃k/10�� � � � � s̃k�, we first choose
s9 so that the simulated fill rate closely matches with
the target, and then evaluate average system cost by
simulation. For comparison, we adjust the input fill
rates so that the simulated fill rates of the DP solu-
tions closely match with the target. Table 2 summa-
rizes the results for the cases of (9 = 4 and 09 = 90%,
where the �E�P1��E�P2��E�P5��E�P6�� = �5�5�2�6�, but
E�P9� and �n1�n2�n5�n6�n9� are allowed to vary. All
costs are evaluated by simulation.

The percentage difference in costs is defined as the
difference between the cost of the DP solution and the
cost of the search-based solution divided by the cost
of the search-based solution. On a Pentium 1.67 GHz
laptop, the search algorithm takes more than an hour
for one instance, while the DP algorithm takes about
one second.

We first note that in all cases, the cost of the DP
solution is reasonably close to that of the search-based
solution. We also observe that when ni’s are relatively
small, e.g., the first row of Table 2, the lead time vari-
ances are relatively large and, consequently, the upper
bounds s̃k are high. In these cases, the search-based
solutions may be inferior to the DP solutions because
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the search-based algorithm only evaluates discrete
points in the base-stock level vector space. However,
when the ni’s are large, e.g., the last row of Table 2,
the lead-time variances are relatively small and, there-
fore, the upper bounds s̃k are low. As a result, the
search-based algorithm can search the base-stock level
vector space more exhaustively. In addition, because
the DP algorithm is based on approximations, it may
not be sensitive enough to small performance differ-
ences between various solutions. Thus, in these cases,
the search-based algorithm can yield higher quality
solutions than the DP algorithm.

6.2. Impact of Stock Positioning
Theorem 3.2 and Proposition 3.3 imply that increasing
stock levels upstream while maintaining the overall
stock level in a serial supply chain, results in longer
backorder delays to external customers and a longer
waiting time for any item in the system. On the other
hand, using a computational study, Gallego and Zip-
kin (1999) illustrated that the impact of stock position-
ing is relatively small given that the overall stock level
is about right. Motivated by these seemingly contra-
dictory statements, in this section, we study the fol-
lowing issues: What is the magnitude of the impact
of stock positioning on system performance? And,
under what conditions is system performance sensi-
tive to stock positions?

To answer these questions, we consider a simple
two-stage serial system with stage 1 facing external
demand. Without loss of generality, we assume zero
transportation lead times and zero external replenish-
ment lead times, but nonzero and constant processing
times at each stage. By Definition 3.1 and Equa-
tions (3), (5), and (6), the backorder delay at stage 1
can be expressed by

X1 = ��P2 − T �s2��
+ + P1 − T �s1��

+

= �P2 + P1 − T �s2�− T �s1�+ �T �s2�− P2�
+�+

= �P1 + P2 − T �s1 + s2�+ �T �s2�− P2�
+�+� (42)

First, note that �T �s2� − P2�
+ = W2 is the inventory

holding time at stage 2. Second, if we set s2 = 0, then
X1 = �P1 + P2 − T �s1 + s2��

+. Therefore the extra back-
order delay at s2 �= 0 relative to s2 = 0 comes directly
from the extra inventory holding time at stage 2. Intu-
itively, part of the additional inventory holding time

at the upstream stage, W2, is translated into the addi-
tional backorder delay at the downstream stage.

For simplicity, let s = s1 + s2 and P = P1 + P2. Fig-
ure 5 demonstrates the impact of P2/P and s2/s on the
fill rate and expected backorder delay to external cus-
tomers. In this example, P = 20, �= 1, (1 = 0, and 0=
0�95. The solid lines represent the fill rates as functions
of s2/s for different P2/P , while the dashed lines rep-
resent the E�X1�’s (normalized by the expected back-
order delay at s2 = s) for different P2/P . Monte-Carlo
simulation with sample size 40,000 is used to generate
the results. Figure 1 reveals that

• When P2/P is relatively high (e.g., 0.8), the fill
rate and E�X1� are insensitive to s2/s for a relatively
wide range of s2/s, e.g., when s2/s varies from 0
to 0.7, E�X1� does not change much; similarly when
s2/s varies from 0 to 0.6, the fill rate remains almost
the same.

• As P2/P decreases, system performance becomes
more sensitive to stock positioning. For instance, at
P2/P = 0�2, E�X1� does not change much only in the
range �0�0�3�, while the file rate does not change
much only in �0�0�1�.

Figure 5 The Impact of Stock Positions on System Performances
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Intuitively, if P2/P is relatively high (e.g., close to
one), one has large flexibility in positioning the stocks
as long as the overall stock level is correct. However,
if P2/P is relatively small (e.g., close to zero), then
system performances, i.e., the fill rates and expected
delays, become very sensitive to stock positions.

6.3. Impact of Lead-Time Uncertainty
In this section, we consider a more elaborate exam-
ple; namely, Example 2, with 22 nodes and 21 arcs
(see Figure 6). This example is inspired by a real-
world problem, the Bulldozer supply chain (Graves
and Willems 2003b). The objective of this section is
to develop insights into the impact of the lead-time
uncertainties on the system performances.

We refer the reader to Table 5 in Appendix C for the
cost and lead-time data. While we keep the inventory
holding costs and the expected processing times the
same as in Graves and Willems (2003b), we assume
stochastic processing times and stochastic, nonzero
transportation lead times with the means gener-
ated randomly according to Uniform�1�2� � � � �10�. The
external supply lead times are zero. Without loss of
generality, we assume that the external demand fol-
lows the Poisson process with � = 1, and the target
customer service at the final assembly is specified by
( = 0 and 0= 95%.

To study the impact of the lead-time uncertain-
ties, we assume that all processing times and trans-
portation lead times follow Erlang distributions with
possibly different means but the same coefficient of

Figure 6 The Example 2
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variation, i.e., the same n. While this example is
computationally prohibitive for the simulation-based
search algorithm (§6.1), it takes around 20 seconds for
the DP algorithm to generate a solution on a Pentium
1.67 GHz laptop.

First, we demonstrate the accuracy of the approx-
imations in this example. For different values of n,
we use the DP algorithm to determine the base-stock
level at each node and then use simulation to esti-
mate the total cost and fill rate. Table 3 presents the
absolute percentage difference in costs between the
simulation and the approximation, and the absolute
difference in fill rates between simulation and the
target. The confidence intervals for all simulated fill
rates are no larger than 1.4%. The table shows that
the cost approximations are very accurate for all lead-
time c.v.s. On the other hand, the fill-rate approxi-
mations are reasonably accurate when the lead-time
c.v.s. are relatively small. However, when the lead-
time c.v.s. are relatively large, e.g., larger than 0.33,
the fill-rate approximation may perform quite poorly.
This is explained as follows: as we discussed in §6.1,
normal distribution is a poor fit for the random lead
times when n is close to 1. Indeed, when n = 1, the
lead-time distribution is exponential, and the normal
approximation can be far from accurate.

Second, we study the impact of lead-time uncer-
tainties. Table 4 provides information on cost, overall
stock levels, and fill rates as a function of the lead-
time uncertainty. For each value of the lead-time c.v.,
we use the DP to determine the base-stock level at
each stage. We then apply simulation to verify the ser-
vice level provided to the external customers. If the
service level did not closely match with the target,
we adjusted the DP input fill rate until the simulated
fill rate matched the 95% target. Columns “Cost (by
simulation)” and “Sum of stock levels” provide infor-
mation on total cost and the overall stock level in each
case. We explain the remaining columns later. The last

Table 3 The Accuracy of the Approximations in Example 2

n 2 4 9 16 64 N/A

Lead-time c.v. 0	707 0	5 0.33 0.25 0	125 0
Absolute percentage 2	09 1	19 0.31 0.97 0	99 1	17
difference in costs (%)

Difference in fill rates (%) 8	37 5	56 3.87 2.11 0	82 0	46
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Table 4 The Impact of Lead-Time Uncertainty

Simulated fill rate of the
Cost Sum of solution of constant Percentage

n Lead-time c.v. (by simulation) stock levels lead times cost increase (%)

2 0	707 $906�135± 5�381 375 0	285± 0	0088 25	51
4 0	5 $666�386± 4�417 320 0	456± 0	0098 11	64
9 0	33 $496�430± 3�775 241 0	664± 0	0093 7	8
16 0	25 $427�056± 3�504 222 0	785± 0	0081 6	15
64 0	125 $352�778± 3�260 191 0	902± 0	0058 0	74
N/A 0 $309�352± 3�082 185 0	949± 0	0043 N/A

row in Table 4 represents a system with deterministic
processing times and transportation lead times.

Clearly, lead-time uncertainties have substantial
impact on both systemwide inventory cost and stock
levels, e.g., the cost is nearly tripled and the sum
of stock levels is more than doubled as the coeffi-
cients of variation of all lead times increase from 0
to 0.707. The proposed approach can adjust the stock
levels at each node according to the lead-time uncer-
tainties. Table 6 in Appendix C lists the solutions
found by the DP algorithm for different n. The table
reveals that the lead-time uncertainties may also have
an impact on the stock positions. While the stock lev-
els at many nodes increase more or less proportionally
as the lead-time uncertainties increase, the stock levels
at nodes “Main assembly,” “Common subassembly,”
“Chassis/platform,” and “Dressed-out engine” may
change dramatically as the uncertainties increase up
to a certain level.

Our computational study also illustrates that ignor-
ing lead-time uncertainties can lead to substantial
errors. To provide measures of the potential errors, we
replace the stochastic lead times with their means and
use the DP algorithm to find a solution (note that we
still allow for stochastic backorder delays). We then
apply this solution to the original problem and deter-
mine the actual fill rate using simulation. This is listed
in the fifth column “Simulated fill rate” of Table 4.
Clearly, the policy based on a deterministic approx-
imation of lead time may yield a customer service
level far below the target level, especially when the
lead-time uncertainties are quite significant.

Finally, if we set the DP input fill rates high enough
so that the simulated fill rates of the solutions that
ignore the lead-time uncertainties match with the tar-
get (95%), then the systemwide costs could be much

higher than those of the solutions that incorporate the
lead-time uncertainties. The last column of Table 4
lists the percentage cost increase of the solutions that
ignore the uncertainties relative to the solutions that
incorporate the uncertainties. We observe that the per-
centage cost increase can be significant for situations
with relatively large lead-time uncertainties.

7. Conclusion
In this paper, we provide a unified framework to
evaluate and coordinate inventory policies for sup-
ply chains with tree structures, where the lead times
are stochastic, sequential, and exogenously deter-
mined. Each stage controls inventory with a con-
tinuous review base-stock policy, and the external
demands follow independent Poisson processes. We
follow the stochastic-service model approach, and
derive recursive equations for the backorder delays at
all stages. The recursive equations allow us to charac-
terize the dependencies among different stages in the
supply chain and to develop analytical and numeri-
cal insights with respect to safety stock positioning.
A numerical study shows that the approximations are
reasonably accurate for a wide range of parameters,
and the algorithm based on dynamic programming
can find the optimal or close to optimal solutions
efficiently.

It is appropriate to conclude this paper by iden-
tifying the limitations of our framework, which also
indicate future research directions.

• In this paper, we assume that external demand
follows independent Poisson processes. Indeed, the
recursive equations are derived for point processes,
among which the compound Poisson processes are
special cases. Thus Theorem 3.2 and Propositions 3.3,
3.4, and 3.8 hold for systems facing compound Pois-
son demand processes. However, compound Poisson
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processes present additional challenges for perfor-
mance evaluation and optimization because Proposi-
tion 3.9 may not hold, and the probability distribution
of the backorder delay at each node may depend on
the demand index.

• Our framework ignores production capacity lim-
itations and batch size constraints. The evaluation and
optimization of supply chains that include these con-
straints remains a challenging area.

• Extending this framework to supply chains with
a cyclic networks is an important challenge.

• If the lead-time correlations in assembly systems
cannot be ignored (as in ATO systems), then it is dif-
ficult to implement the DP algorithm, because incor-
porating the lead-time correlations will result in a
significant increase in the dimensions of the state
space. However, global optimization algorithms with
decision variables either sk or E�Xk� can be imple-
mented, and the DP algorithm that ignores the lead-
time correlations can be used to generate a good
starting point.

• Finally, better and more robust approximations
are needed for supply chains with highly uncertain
lead times.
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Appendix A
To prove Theorem 3.2, we first need the following technical
Lemma 7.1.

Lemma 7.1. Given any constants a, b, a′, b′, and c, d, if
a+ b = a′ + b′ and a≤ a′, then

5 = a− c+ �b− d�+ ≤ 5′ = a′ − c+ �b′ − d�+� (43)

6 = c− a+ �d− b�+ ≥ 6′ = c− a′ + �d− b′�+� (44)

Proof. The case of a = a′ is trivial, so we focus on the
case of a < a′. Clearly, a < a′ and a+ b = a′ + b′ imply b > b′.
We consider the following three cases:

Case 1: b′ ≥ d. In this case, 5 = a − c + b − d and 5′ =
a′ − c + b′ − d, thus 5 = 5′; 6 = c − a, and 6′ = c − a′, thus
6 > 6′.

Case 2: b′ < d < b. In this case, 5 = a− c + b − d and 5′ =
a′ − c, thus 5 < 5′ because a+ b−a′ −d = b′ −d < 0; 6 = c−a
and 6′ = c − a′ + d − b′, thus 6 > 6′ because a′ + b′ − a− d =
b− d > 0.

Case 3: d ≥ b. In this case, 5 = a− c and 5′ = a′ − c, thus
5 < 5′; 6 = c−a+d−b and 6′ = c−a′ +d−b′, thus 6 = 6′. �

Proof of Theorem 3.2. It follows from Equations (3), (5),
and (6) that

X1�n1� =  �L2�n2�n1�− s2�− T �s2�n2�n1���
+

+ t2�1 + P1 − T �s1�n1�!
+� (45)

X ′
1�n1� =  �L2�n

′
2�n1�− s′2�− T �s′2�n′

2�n1���
+

+ t2�1 + P1 − T �s′1�n1�!
+� (46)

Because systems with both stock positions are defined in
the same probability space, it follows from the fact

n2�n1�− s2 = n1 − s1 − s2 = n1 − s′1 − s′2 = n′
2�n1�− s′2� (47)

that in any event,

L2�n2�n1�− s2�= L2�n
′
2�n1�− s′2�� (48)

We also observe that in any event,

T �s2�n2�n1��+ T �s1�n1� = T �s′2�n′
2�n1��+ T �s′1�n1�� (49)

T �s′1�n1� ≥ T �s1�n1�� (50)

Equation (49) follows from the fact that the expressions on
both sides of this equation define the identical interarrival
times (see Figure 1); inequality (50) is due to the fact that
s′1 > s1. Combining these observations with Lemma 7.1, it
follows that in any event, X ′

1�n1� ≤ X1�n1�, i.e., X ′
1�n1� ≤st

X1�n1�.
We now prove inequality (12). It follows from Equa-

tions (4)–(7) that

W2�n2�n1��+W1�n1� = �T �s2�n2�n1��−L2�n2�n1�− s2��
+

+  T �s1�n1�− �L2�n2�n1�− s2�

− T �s2�n2�n1���
+ − t2�1 − P1!

+�
(51)

W ′
2�n

′
2�n1��+W ′

1�n1� = �T �s′2�n′
2�n1��−L2�n

′
2�n1�− s′2��

+

+  T �s′1�n1�− �L2�n
′
2�n1�− s′2�

− T �s′2�n′
2�n1���

+ − t2�1 − P1!
+�
(52)

We analyze the following three cases:
Case 1: T �s′2�n′

2�n1�� ≥ L2�n
′
2�n1�− s′2�. In this case, Equa-

tions (48)–(49) and inequality (50) imply that T �s2�n2�n1��≥
L2�n2�n1�−s2�. Hence, Equations (51)–(52) can be reduced to

W2�n2�n1��+W1�n1� = T �s2�n2�n1��−L2�n2�n1�− s2�

+  T �s1�n1�− t2�1 − P1!
+�

W ′
2�n

′
2�n1��+W ′

1�n1� = T �s′2�n′
2�n1��−L2�n

′
2�n1�− s′2�

+  T �s′1�n1�− t2�1 − P1!
+�
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It follows from Equations (48)–(49), inequality (50), and
Lemma 7.1 that W ′

2�n
′
2�n1��+W ′

1�n1�≤W2�n2�n1��+W1�n1�.
Case 2: T �s′2�n′

2�n1�� < L2�n
′
2�n1� − s′2� < T �s2�n2�n1��. In

this case, Equation (48) implies that Equations (51)–(52) can
be reduced to

W2�n2�n1��+W1�n1� = �T �s2�n2�n1��−L2�n2�n1�− s2��
+

+  T �s1�n1�− t2�1 − P1!
+�

W ′
2�n

′
2�n1��+W ′

1�n1� =  T �s′2�n′
2�n1��−L2�n

′
2�n1�− s′2�

+ T �s′1�n1�− t2�1 − P1!
+�

It follows from Equations (48)–(49) that W ′
2�n

′
2�n1�� +

W ′
1�n1�≤W2�n2�n1��+W1�n1�.
Case 3: T �s2�n2�n1�� ≤ L2�n

′
2�n1�− s′2�. In this case, Equa-

tion (49) and inequality (50) imply that T �s′2�n′
2�n1�� ≤

L2�n
′
2�n1� − s′2�. It follows from Equation (48) that Equa-

tions (51)–(52) can be reduced to

W2�n2�n1��+W1�n1� =  T �s2�n2�n1��−L2�n2�n1�− s2�

+ T �s1�n1�− t2�1 − P1!
+�

W ′
2�n

′
2�n1��+W ′

1�n1� =  T �s′2�n′
2�n1��−L2�n

′
2�n1�− s′2�

+ T �s′1�n1�− t2�1 − P1!
+�

It follows from Equations (48)–(49) that W ′
2�n

′
2�n1�� +

W ′
1�n1�=W2�n2�n1��+W1�n1�. �

Proof of Proposition 3.3. First, note that W ′
k�n

′
k�n1��= 0

for all k > 1; therefore the system with SP′ can be reduced
to a single-stage system with the total replenishment lead
time equal to SK +∑K

k=1 Pk +
∑K−1

k=1 tk+1� k. The proof is based
on the following algorithm that transforms SP to SP′.

Step 1. If s2 = 0, go to Step 2; otherwise, reduce s2 by
one and increase s1 by one until s2 becomes zero. Because∑K

k=3 Wk�nk�n1�� remain stochastically the same, it follows
from Theorem 3.2 that X1�n1� and

∑K
k=1 Wk�nk�n1�� either

become stochastically smaller or remain stochastically the
same in each of these operations.

Step 2. Combine node 2 with node 1, so that the new
node 1 has a processing time P1 + P2 and a transporta-
tion lead-time t2�1 + t3�2. Renumber other nodes upstream
sequentially by 2�3� � � � � If all nodes other than the node 1
have zero base-stock levels, stop; otherwise, go back to
Step 1.

Clearly, the output of the algorithm is the system with
the stock positioning SP′. �

Proof of Proposition 3.4. It follows from Equation (15)
that

Xk�nk� =
(

max
i=1�2�����I

�Xi�ni�nk��+ ti�k�+ Pk − T �sk�nk�
)+

� (53)

X ′
k�nk� =

(
max

i=1�2�����I
�X ′

i �n
′
i�nk��+ ti� k�+ Pk − T �s′k�nk�

)+
� (54)

where

Xi�ni�nk��= �Li�ni�nk�− si�− T �si�ni�nk���
+� (55)

X ′
i �n

′
i�nk��= �Li�n

′
i�nk�− s′i�− T �s′i� n′

i�nk���
+� (56)

Because of the identical demand processes at nodes i =
1�2� � � � � I and node k, we drop the subscripts from the T ’s.
Choosing the indices appropriately yields ni�nk� − si =
n′

i�nk� − s′i , and therefore Li�ni�nk� − si� = Li�n
′
i�nk� − s′i�

for all i.
Without loss of generality, let X ′

1�n
′
1�nk�� + t1� k =

maxi=1�2�����I �X
′
i �n

′
i�nk�� + ti� k�. If X1�n1�nk�� + t1� k =

maxi=1�2�����I �Xi�ni�nk�� + ti� k�, then the problem is reduced
to that of the serial systems, and the result follows
immediately from Theorem 3.2. Otherwise, we must have

X ′
k�nk� = �X ′

1�n
′
1�nk��+ t1� k + Pk − T �s′k�nk��

+

≤ �X1�n1�nk��+ t1� k + Pk − T �sk�nk��
+

≤ Xk�nk��

where the first inequality follows from Theorem 3.2, and the
second inequality is due to Equation (53). �

Proof of Proposition 3.7. Starting at the arrival time
of demand nk, we count backward all the previous inter-
arrival times of external demands. Because of the indepen-
dent Poisson processes, the interarrival times are mutually
independent, and therefore they are associated (Tong 1980,
Theorem 5.2.2 Part (d)). Furthermore, Xi�ni�nk�� are non-
increasing functions in each of these interarrival times
because Li�si�ni�nk�� are nondecreasing functions of these
interarrival times. Conditioning on all the transit times,
i.e., the processing cycle times, transportation lead times,
and external lead times, it follows from Tong (1980, Theo-
rem 5.2.3) and Assumption 1.1 that Xi�ni�nk�� are associated
random variables. By Tong (1980, Theorem 5.2.4), inequal-
ity (25) holds for each nk and ( and for each realizations of
the transit times. Unconditioning on the transit times yields
the desired result. �

Proof of Proposition 3.8. It follows from Equations
(26), (28), and (29), and the assumption of the common
probability space that

Xj�nj � =  �Xi�ni�nj ��+ ti� k + Pk − Tk�sk�nk�nj ���
+

+ tk� j + Pj − Tj�sj �nj �!
+�

X ′
j �nj � =  �Xi�ni�nj ��+ t′i� k + Pk − Tk�sk�nk�nj ���

+

+ t′k� j + Pj − Tj�sj �nj �!
+�

Combining Equation (31) and inequality (32), it follows
from Lemma 7.1 that in any event, X ′

j �nj � ≤ Xj�nj �, i.e.,
X ′

j �nj �≤st Xj�nj �.
We now prove inequality (34). Equations (30), (27),

and (28) imply that

Wk�nk�nj �� = �Tk�sk�nk�nj ��−Xi�ni�nj ��− ti� k − Pk�
+� (57)

Wj�nj � =  Tj �sj �nj �− tk� j − Pj − �Xi�ni�nj ��

+ ti� k + Pk − Tk�sk�nk�nj ���
+!+� (58)

W ′
k�nk�nj �� and W ′

j �nj � can be expressed by Equations
(57)–(58) if one replaces ti� k and tk� j by t′i� k and t′k� j ,
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respectively. We analyze the following three cases:
Case 1: W ′

k�nk�nj �� > 0. In this case, Equations (31), (57),
and inequality (32) imply that Wk�nk�nj �� > 0. Hence

Wk�nk�nj ��+Wj�nj � = Tk�sk�nk�nj ��−Xi�ni�nj ��− ti� k

− Pk +  Tj �sj �nj �− tk� j − Pj !
+�

W ′
k�nk�nj ��+W ′

j �nj � = Tk�sk�nk�nj ��−Xi�ni�nj ��− t′i� k

− Pk +  Tj �sj �nj �− t′k� j − Pj !
+�

It follows from Equation (31), inequality (32), and
Lemma 7.1 that W ′

k�nk�nj ��+W ′
j �nj �≤Wk�nk�nj ��+Wj�nj �.

Case 2: W ′
k�nk�nj �� = 0 and Wk�nk�nj �� > 0. In this case,

we have

Wk�nk�nj ��+Wj�nj � =  Tj �sj �nj �− tk� j − Pj !
+ +  Tk�sk�nk�nj ��

−Xi�ni�nj ��− ti� k − Pk!
+�

W ′
k�nk�nj ��+W ′

j �nj � =  Tj �sj �nj �− t′k� j − Pj + Tk�sk�nk�nj ��

−Xi�ni�nj ��− t′i� k − Pk!
+�

It follows from Equation (31) that W ′
k�nk�nj ��+W ′

j �nj � ≤
Wk�nk�nj ��+Wj�nj �.

Case 3: Wk�nk�nj �� = 0. In this case, Equations (31), (57),
and inequality (32) imply that W ′

k�nk�nj �� = 0. Hence

Wk�nk�nj ��+Wj�nj � =  Tj �sj �nj �− tk� j − Pj + Tk�sk�nk�nj ��

−Xi�ni�nj ��− ti� k − Pk!
+�

W ′
k�nk�nj ��+W ′

j �nj � =  Tj �sj �nj �− t′k� j − Pj + Tk�sk�nk�nj ��

−Xi�ni�nj ��− t′i� k − Pk!
+�

It follows from Equation (31) that W ′
k�nk�nj ��+W ′

j �nj � =
Wk�nk�nj ��+Wj�nj �. �

Appendix B
In the algorithm of Graves and Willems (2000), all nodes are
initially labeled. We summarize the following properties of
the labeling system:

(1) Each node labeled in the first K − 1 steps is adjacent
to exactly one node with higher label. Let P�k� be the node
with higher label for node k = 1� � � � �K − 1. For node K, all
adjacent nodes have lower label.

(2) Following Graves and Willems (2000), we define �k,
k = 1� � � � �K to be the subset of nodes �1�2� � � � � k� that are
connected to k on the subgraph of �1�2� � � � � k�.

�k = �k�+ ⋃
i<k� �i� k�∈�

�i +
⋃

j<k� �k� j�∈�
�j �

The dynamic programming algorithm follows the order of
labels and solves the program P for the subgraph �k at each
node k for certain inputs from the node P�k�. In particular,

• If P�k� is a downstream node, we define Fk�E�Xk��
V �Xk�� to be the minimal cost in the subgraph �k for a given
pair of E�Xk� and V �Xk�.

• If P�k� is an upstream node, we define Gk�E�XP�k���
V �XP�k��� to be the minimal cost in the subgraph �k for a
given pair of E�XP�k�� and V �XP�k��.
Thus, given �Xk (mean and variance), E�Xk� and demand
rate at node k, the total cost in the subgraph of �k can be
expressed by

Ck�E��Xk��V ��Xk��E�Xk�� = Hk�E��Xk��V ��Xk��E�Xk��

+ ∑
i<k� �i� k�∈�

Fi�E�Xi��V �Xi��

+ ∑
j<k� �k� j�∈�

Gj�E�Xk��V �Xk���

(59)

where Hk and V �Xk� are calculated by Equations (39)–(40),
respectively. The first term is the average inventory carrying
cost at node k, the second term represents the minimum
costs for the suppliers of node k with lower labels, and the
third term represents the minimum costs of the immediate
customers of node k with lower labels.

For a node k = 1�2� � � � �K − 1, if P�k� is the downstream
of k, then for each feasible pair of E�Xk� and V �Xk� that
satisfies E�Xk� ∈  0�Qk! and V �Xk� ∈  0��2

k !,

Fk�E�Xk��V �Xk��

= min
E�Xi��V �Xi�� �i� k�∈�

�Ck�E��Xk��V ��Xk��E�Xk���

s.t. Lk =max�Xi + ti� k�∀ �i� k� ∈�*Sk�+ Pk�

E�Xk�≤ E�Lk��

V �Xk�= fk�E��Xk��V ��Xk��E�Xk���

(60)

Clearly, each pair of E�Xi� and V �Xi� can only be chosen
from its feasible region.

If P�k� is the upstream of k, then for each feasible pair
of E�XP�k�� and V �XP�k�� that satisfies either E�XP�k��= 0 and
V �XP�k��= 0 or 0< E�XP�k��≤QP�k� and 0< V �XP�k��≤ �2

P�k�,

Gk�E�XP�k���V �XP�k���

= min
E�Xi��V �Xi�� i<k� �i� k�∈�*E�Xk�

�Ck�E��Xk��V ��Xk��E�Xk���

s.t. Lk =max�Xi + ti� k� ∀ �i� k� ∈�*Sk�+ Pk�

E�Xk�≤min�Qk�E�Tk���

V �Xk�= fk�E��Xk��V ��Xk��E�Xk��≤ �2
k �

(61)

Each pair of E�Xi� and V �Xi�, i < k, �i� k� ∈� choose a value
from its feasible region.

Now, we are ready to describe the dynamic program:
(1) For k = 1 to K − 1, if P�k� is the downstream node

of k, then we evaluate Fk�E�Xk��V �Xk�� by Equation (60) for
each feasible discrete pair of E�Xk� and V �Xk�. If P�k� is the
upstream node of k, then we evaluate Gk�E�XP�k���V �XP�k���
by Equation (61) for each feasible discrete pair of E�XP�k��
and V �XP�k��.
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(2) For k =K, we evaluate FK�E�XK��V �Xk�� for each fea-
sible discrete pair of E�XK� and V �XK�, and then we pick
the minimum.

All optimizations are solved by enumeration. To identify
the computational complexity of the algorithm, we define
9k = �2

k if P�k� is the downstream of node k, and 9k = 1
otherwise. For node k, the computation effort is at most
proportional to O�Qk × 9k ×

∏
�i� k�∈��Qi ×�2

i ��, and the total
computational effort is at most proportional to O�

∑K
k=1 Qk ×

9k ×
∏

�i� k�∈��Qi × �2
i ��. Thus the major computational com-

plexity comes from the assembly nodes.
To illustrate the DP algorithm, we consider a three-stage

serial system with the following labels: node 1 supplies
node 3, which supplies node 2. This system can be solved
as follows:

(1) For node 1, we first note that V �X1� is uniquely deter-
mined by E�X1�. Therefore, for each feasible E�X1� ∈  0�Q1!,
we identify the corresponding base-stock level s1 and calcu-
late F1�E�X1��V �X1��, where V �X1� depends on E�X1�.

(2) For node 2 and each pair of E�X3� ∈  0�Q3! and
V �X3� ∈  0��2

3 !, we determine G2�E�X3��V �X3�� by identi-
fying the optimal E�X2� (or s2, equivalently), so that the
inventory cost of node 2 is minimized and all constraints in
Equation (61), and the service constraint are satisfied.

(3) For node 3 and each feasible pair of E�X3� ∈  0�Q3!
and V �X3� ∈  0��2

3 !, we compute F3�E�X3��V �X3�� by enu-
merating all feasible E�X1�. Then, we identify the pair of
E�X3� and V �X3� with minimal F3�E�X3��V �X3��.

Appendix C

Table 5 Data for Example 2

Added
Node i E�Pi � cost ($) Node j E�ti� j �

Platform group 6 725 Chassis/platform 7
Fender group 9 900 Chassis/platform 5
Roll-over group 8 1�150 Chassis/platform 4
Chassis/platform 7 4�320 Main assembly 7
Frame assembly 19 605 Case and frame 9
Case 15 2�200 Case and frame 4
Case and frame 16 1�500 Common subassembly 10
Brake group 8 3�850 Final drive and brake 6
Drive group 9 1�550 Final drive and brake 5
Plant carrier 9 155 Final drive and brake 2
Final drive and brake 6 3�680 Common subassembly 9
Engine 7 4�500 Dressed-out engine 10
Fans 12 650 Dressed-out engine 5
Dressed-out engine 10 4�100 Main assembly 2
Boggie assembly 11 575 Suspension group 1
Pin assembly 35 90 Suspension group 6
Suspension group 7 3�600 Final assembly 7
Transmission 15 7�450 Common subassembly 4
Common subassembly 5 8�000 Main assembly 5
Main assembly 8 12�000 Final assembly 7
Track roller frame 10 3�000 Final assembly 10
Final assembly 4 8�000 N/A N/A

Table 6 Solutions for Example 2

Constant
Node i n= 2 n= 4 n= 9 n= 16 lead times

Platform group 4 4 2 0 0
Fender group 5 6 2 2 0
Roll-over group 3 2 0 0 0
Chassis/platform 19 18 1 1 0
Frame assembly 23 18 18 17 12
Case 2 0 0 0 0
Case and frame 38 35 32 31 30
Brake group 0 0 0 0 0
Drive group 7 5 3 2 0
Plant carrier 11 8 5 3 0
Final drive and brake 9 8 9 10 9
Engine 0 0 0 0 0
Fans 11 8 7 5 0
Dressed-out engine 20 21 1 2 1
Boggie assembly 3 4 5 5 3
Pin assembly 86 65 52 47 39
Suspension group 21 20 17 16 16
Transmission 0 0 0 0 0
Common subassembly 21 21 2 2 3
Main assembly 24 24 39 34 35
Track roller frame 18 15 13 12 11
Final assembly 50 38 33 33 26

We summarize implementation details as follows. From
the above example and our numerical study, we observe
that most pairs of E�Xk� and V �Xk� are infeasible in solv-
ing Equation (60). In addition, E�Xk� is often more impor-
tant than V �Xk� in determining the system performance.
Therefore we can significantly improve the numerical effi-
ciency of the DP algorithm by substituting Fk�E�Xk�� for
Fk�E�Xk��V �Xk��. More specifically, we compute Fk only over
the feasible region of E�Xk�, and determine V �Xk� ≤ �2

k for
each E�Xk� by V �Xk� = fk�E��X∗

k ��V ��X∗
k ��E�Xk��, where �X∗

k

are the backorder delays at the suppliers of node k that
solve for Fk�E�Xk�� in Equation (60).

We discretize the time line so that the expected back-
order delay and delay variance at each node are restricted
to take only discrete values. Consider an arbitrary node k
and assume that P�k� is the downstream node. To deter-
mine the corresponding base-stock level at node k for a
given E�Xk�, we choose the smallest integer so that the
actual expected backorder delay at node k is smaller than
or equal to E�Xk�. If the actual expected backorder delay
at the base-stock level chosen does not match the given
E�Xk�, we set the E�Xk� to be the actual expected back-
order delay. If P�k� is the upstream node, then we need to
enumerate all possible pairs of E�XP�k�� and V �XP�k�� (see
Equation (61)). To improve numerical efficiency, the nodes
in the networks are labeled in such a way that the number
of nodes with upstream P�k� is minimized. When we eval-
uate Equation (59), E�Xk� and V �Xk� may not completely
match with the discrete values of E�X� and V �X� for which
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Gj , j < K, �k� j� ∈ � is calculated. In this event, we either
identify the closest discrete values of E�X� and V �X� or use
interpolation.
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