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sharing on the manufacturer’s performance in an infinite time horizon under both
i.i.d. demand and independent but nonstationary demand

1. INTRODUCTION

Information technology is an important enabler of efficient supply chain strategies
Indeed much of the current interest in supply chain management is motivated by the
possibilities introduced by the abundance of data and the savings inherent in sophis-
ticated analysis of these dakor exampleinformation technology has changed the
way companies collaborate with suppliers and custonéese collaborations/hich

allow companies to share sensitive demand information with their suppliers in real
time, have achieved huge success in practice in terms of inventory rediszimce

level improvementand quick response to market chang®tein and Swed31]).

The benefits of sharing demand-related information among supply chain part-
ners has been explored by many authfimsexamplethe Bullwhip effects reduction
(Lee Padmanabharand Whand 21] and ChenDrezney Ryan and Simchi-Levi
[5]) and the inventory cost reductighlariharan and Zipkinl3], Gallego and Ozer
[10], Gavirnenj Kapuscinskiand Tayuf11], Aviv and Federgruef2], Cachon and
Fisher[3], Chen[4], and Simchi-Levi and Zhal®8]). These studies cover a broad
range of production—distribution systeysach as single-supplier and single-retailer
systemgGavirneni et al[11], Simchi-Levi and Zha$28]), single-suppligrmulti-
retailer systemgAviv and Federgruefi2], Cachon and FishéB]), and multistage
series systemEhen[4] and Chen et a[5]). An excellent review of recent research
can be found in Cachon and Fisté&t.

In this article we focus on a single capacitated manufacturer serving a single
retailer The retailer faces independent demand and the objective is to analyze the
impact of information sharing on the manufacturer’s cost and service |eMads
impact of information sharing on a capacitated manufacturer has been analyzed by
several authorAviv and Federgruef2] analyzed a single-supplienulti-retailer
system in which retailers faced random demand and shared inventories and sales
data with the supplieThey analyzed the effectiveness of a Vendor Managed Inven-
tory (VMI) program where sales and inventory data are used by the supplier to
determine the timing and the amount of shipments to the retafferghis purposg
they compared the performance of the VMI program with that of a traditjaieal
centralized systepas well as a supply chain in which information is shared contin-
uously but decisions are made individual(i.e., by the different parties Their
focus in the three systems analyzed was on minimizing long-run averagéwiost
and Federgruen reported that information sharing reduces systemwide cost by 0-5%
whereas VMI reduces cqstelative to information sharingoy 0.4-95% and on
average by #%. They also showed that information sharing could be very benefi-
cial for the supplier

The work by Gavirneni et al[11] analyzed a two-stage supply chain with a
single capacitated supplier and a single retallethis periodic review modethe
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retailer made ordering decisions every periesing an(s, S) inventory policy and
transferred demand information every time an order decision was,riratpen-
dent of whether an order was madessuming zero transportation lead tipteey
showed that the benefit.e., the supplier cost savings due to information sharing
increased with production capacity and it ranged from 1% t0.35%

The focus of this article is on the benefits of information sharing for a capaci-
tated supplier in a two-stage supply chain with an infinite time horizorthis
model the retailer shares demand information with the supplier even at times during
which she does not make order decisiortss is clearly the case in many industries
in which demand information can be shared very freque(®ly,, every second or
every minutewhile orders are placed less frequer{gyg., every day or every week
A recent article by Simchi-Levi and Zhd@8] studied this model in a finite time
horizon settingThey show that by sharing demand informatitime supplier can
reduce its inventory cost substantially while maintaining the same service level to
the retailer

The optimal control of a periodic review production—inventory system in an
infinite time horizon is a classical Markov decision problem with infinite state space
and unbounded cost functiohhe literature on these problems is quite voluminous
(see e.g., Heyman and Sobdll5] and Puterman24] for a general theory of the
Markov decision proces&arlin [17], Zipkin [32], Sethi and Chenf27], and Song
and Zipkin[30] for systems with time-varying parametgFedergruen and Zipkin
[7,8] for systems with production capacity constrajnt&inally, Aviv and Feder-
gruen 1] and Kapuscinski and Tay[t6] have analyzed periodic review production—
inventory systems with capacity constraints and time-varying parameters and their
results are most relevant to our modetey show that a modified cyclic order-up-to
policy (i.e.,, a modified order-up-to policy with periodically varying order-up-to
levels is optimal under both discounted and average cost critefibis is done
by verifying the optimality conditions developed by Senrj@t] and Federgruen
Schweitzerand Tijms[6].

In the next sectioywe describe our model and identify the differences between
our model and results and those of Aviv and Federgfué¢mand Kapuscinski and
Tayur[16].

2. THE MODEL

Consider a single produgteriodic reviewtwo-stage production—inventory system
with a single capacitated manufacturer and a single retailer facing independent de-
mand and using an order-up-to inventory paliby practice many retailers place
orders periodicallye.g., every week or every monthThus we assume that the
retailer places an order evellytime periods(e.g., 7 days to raise his inventory
position to a target levelThe manufacturer receives demand information from the
retailer everyr units of time(7 = T). For instancethe retailer places an order every
week but provides demand information every déke refer to the time between
successive orders as thedering periodand the time between successive informa-
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tion sharing as thimformation period Of coursein most supply chaingnformation
can be shared almost continuou@yg., every secongwhile decisions are made less
frequently(e.g., every day. Thus information periods really refers to the time in-
terval between successive uses of the information provided

The sequence of events in our model is as folloisthe beginning of an
ordering period the retailer reviews her inventory and places an order to raise the
inventory position to the target inventory lev&he manufacturer receives the order
from the retailerfills the order as much as she can from stoa@kd then makes a
production decisionf the manufacturer cannot satisfy all of a retailer’s order from
stock then the missing amount is backloggé&tie backorder will not be delivered
to the retailer until at least the beginning of the next ordering peRathlly, trans-
portation lead time between the manufacturer and the retailer is assumed to.be zero
Similarly, at the beginning of amformation periodthe retailer transfers PQ®oint
of Sale$ data of previous information period to the manufactugron receiving
this demand informatiarihe manufacturer reduces this demand from her inventory
position although she still holds the stoekd then she makes a production decision

To simplify the analysiswve assume that demand is stationary across the order-
ing periodswhereas the demand distribution may vary across different information
periods within one ordering perioor examplegrocery retailers typically face
much higher demand during weekends than week .da&lythe same timgthese
retailers are replenished once a weSlnce grocery retailers cannot anticipate fu-
ture shortages from the manufactytbey are not able to inflate order-up-to levels
to protect themselves from future shortagésnce we assume in our model that the
retailer’s target order-up-to level is constant for all the ordering peyitas is
every ordering periadhe retailer raises her inventory positi@utstanding order
plus on-hand inventory minus backordets a constant leveAny unsatisfied de-
mand at the retailer is backloggetius the retailer transfers external demand of
each ordering period to the manufactufidgre manufacturer has a production capac-
ity limit (i.e., a limit on the amount the manufacturer can produce per unit ofjtime
and the manufacturer runs her production line always at this capacity limit

LetN = T/7 be an integer which represents the number of information periods
in one ordering periad\Ve index information periods within one ordering period
1,2,...,N, where 1 s the first information period in the ordering period Bid the
last Let C denote production capacity in one information period is the produc-
tion cost per itemand 0< B < 1 is the time discounted factor for each information
period

Since we calculate inventory holding cost for each information peviedeth
be the inventory holding cost per unit product per information peiwiiently, one
unit of product kept in inventory fan information periodsn=N,N—1,...,1, will
incur a total inventory codt,=h(1+ 8 +---+ g" 1),

Due to the finite production capacijtthe manufacturer produces to sto&lor
every item backlogged at the end of each ordering petf@manufacturer pays
as a penalty costt is easy to see that the earlier the manufacturer produces during
a single ordering perigdhe longer she will carry this inventarthus the higher the
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inventory holding costOn the other handpostponing production too long may
result in heavy penalty cost due to the finite production capacity

We useD; to denote the end-user demand in the information periodl,..., N.

D; is assumed to be independgitd distribution only depends dnand its mean is
defined a€D;. To simplify the analysiswe assume that costs do not change from
information period to information perigthter, we will demonstrate that our results

can be easily extended to include cases where costs change periodically within one
ordering period but are the same across different ordering periods

We start by considering a finite time horizon model withordering periods
Index the ordering periods from 0 M — 1, where the 0 ordering period is the first
one and th& — 1 ordering period is the last onEhe finite horizon starts in the first
ordering period at the beginning of th information periodl = j = N. Consider
theith information periodi =1,2,...,N, in ordering periodn, m=0,1,...,M — 1.

Of coursemN+ i = j. We refer to this information period as theN+ i information
period For instancginformation periodnN+ 1 is the first information period in the
mth ordering cycle We refer to this indexing convention as a forward indexing
process

Define x to be the inventory position at the beginning of ttle information
period and§S to be the state space ferLety — x be the amount produced in that
information periody € A,, andA, be the set of feasible actionet £(x, y, D) be the
transition function an® be the demandn our caseA, =[x, x+ Clandé(x,y,D) =
y—D.

It is easy to verify thagmn:i (X, Y), i =1,2,...,N,m=0,...,M — 1, the ex-
pected inventory and production cost in information period + i, given that the
period starts with an inventory positiog andy — x items are produced in that
period can be written as

(xy) c(y—x) + E(L(y,Dy)), i=N L
Gmiv+i 16 Y c(y—x)+hy;(y—x) otherwise @)
whereE(+) is the expectation with respect By, and

L(y,D) =hy(y—D)" +mw(D—-y)" (2)

Because the items produced in iltle information period are carried over until the
end of the ordering perig@n inventory holding cost equalbg_; (y — x) is charged
in this information period

Sincegmne:i (X, y) depends only om and notm, we can writegmn:i(X,Y) =
ri(x,y), dm=20,1,...,M — 1 and Ui = 0,1,...,N. Furthermorer;(x,y) can be
written as the sum of a function af(¢;(x)) and a function o/(¢;(y)), where

—ex, i=N

$i(x) = {—(C + hyoi)X otherwise ©
cy+ E(L(y,Dy)), i=N

eily) = [(c+ haoi )Y otherwise @
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Finally, we assume the salvage cost functgp.1 = 0.

We define the optimal policy under the discounted cost criterion as follogts
o = {o1,0,,...} be any feasible policy wherey is a function depending on the
initial inventory position in period (i.e., o = oy (x) andoy(x) € A, for all k). Let
IT be the set of all feasible policieBefine the expected discounted cost from the
ith information period in the first ordering period until the end of the horizon when
M — oo, as

Ul (x,0) = E<'\|/|ian Zﬂkiigk(xk,ak(xk))‘xi = X)» )

whereE(-) denotes the expectation with respect to demand in all information peri-
ods andx; is the initial inventory position of théth information period fori =
12,...,N.Apolicy o* ={o;,05,...} €Il is called optimal under the discounted
cost criterion if for allx € Sandi,

UiB(X’O-*) = 0'_2{_[ UiB(X’O-)' (6)

Similarly, the optimal policy in an infinite time horizon under the average cost
criterion can be definedrollowing Heyman and Sobgl4], the performance mea-
sure for any feasible polic§ = {64, 5,,...} € IT under the average cost criterion is
defined as

MN
E{kE Ok( X, Bk (Xi)) [ Xi = X}

MN—-i+1

Gi(x,6) = l\ldlin sup (7)
A policy 6* is optimal if it minimizesG;(x, ) for all x andi overlII.

It is easily seen that in the information sharing mo@ekept for those periods
in which orders are placedhe cost functiony;(y) tends to negative infinity as
y = —oo (y > —oo implies that the manufacturer allows for infinite backorders
This is true because although demand is observed by the manufacturer in every
information perioglit only needs to be satisfied at the end of every ordering period
Thus the penalty cost is charged only at the end of ordering periotisreas the
inventory holding costis charged in every information perkarly, this issue was
not addressed in the models analyzed by Aviv and FedergamelKapuscinski and
Tayur since they assumegl(y), for all i, were bounded from belaw

To further explain the difference between this model and previous maelals
consider the following three casdsirst, if the manufacturer only has inventory
holding cost but no penalty cost for all perigttsen the optimal policy is not finite
that is the optimal policy does not have a finite order-up-to level because producing
nothing in all periods is clearly the optimal polic§econdif the manufacturer has
both inventory holding cost and penalty cost for all peridden we have the models
studied by Aviv and Federgrudi] and Kapuscinski and Tay(it6]. Finally, if in
some periods the manufacturer only has inventory holding edstreas in other
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periods she has both holding and penalty gb&n it is not clear whether there exists
an optimal policy with a finite order-up-to level

Thus the objective of this article is twofoldrirst, characterize the optimal
policy for the information sharing model under both discounted and average cost
criteriaz second quantify the benefits and identify the conditions under which in-
formation sharing is most beneficial for the manufacturer in an infinite time hayizon
thatis characterize how frequently information should be shared and when it should
be shared so that the manufacturer can maximize the potential benefits

We show that a cyclic order-up-to policy is optimal under both discounted and
average cost criteridlthough the optimal policy has the same structure as those of
Aviv and Federgruefil] and Kapuscinski and Tay({it6], our analysis of the aver-
age cost criterionwhich is based on the vanishing discount metkidéyman and
Sobel[14]), is quite different from theirs

One of the major difficulties in proving the average cost criterion is to charac-
terize the Markov chain induced by the optimal policy under the discounted cost
criterion To address this issuave introduce a new method to construct and relate
Markov chains in a common state spabegether with the Foster’s criterion and the
Lyapunov functionthis method allows us to show that each of the Markov chains
induced by any finite cyclic order-up-to policy has a single irreducible positive
recurrent class and finite long-run average cost under certain nonrestrictive condi-
tions(Section 3. Then in Section 4we provide a simple proof for the cyclic order-
up-to policy to be optimal under the average cost criterigimally, extensive
computational study is conducted in Sectign&ing IPA(Infinitesimal Perturbation
Analysis, to quantify the impacts of frequency and timing of information sharing
with a particular focus on the differences between finite and infinite time horjzons
and nonstationary external demand

3. PROPERTIES OF CYCLIC ORDER-UP-TO POLICY

In this sectionwe study the Markov processes associated with any cyclic order-
up-to policy and identify conditions under which they are positive recurrent and
have finite steady state average cdste conditions are similar to those identified by
Aviv and Federgruerand Kapuscinski and Tayusut the analysis is quite different
At this point it is appropriate to remind the reader of the definition of a cyclic
order-up-to policy in a capacitated production systensuch a systenevery time
period the manufacturer produces up to the target inventory position if there is enough
production capacityotherwise the manufacturer produces as much as the produc-
tion capacity allowsOf coursethe target inventory position may vary periodically
Consider the information sharing model with the cost functigrx, y) ~
O(|x]?) + O(]y|®), wherep is a positive integeDefine a cyclic order-up-to policy
as a policy with different order-up-to levels for different information perjdust
these levels are the same for the same information period in different ordering pe-
riods that is the order-up-to level in information periodN+ i is the same for all
m but may be different for different i =1,2,...,N.
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LetD;,i=1,...,N, be the random variable representing demand in information
periodmN+i for all m; demand is assumed to take discrete valGessider a cyclic
order-up-to policy with levels,,a,,...,ay, and define the shortfall processes
{Smnei, M= 0,1,...} for differenti = 1,...,N asSyn:i = @& — Ymnei if We are in
periodmN+ i andyq,.i iS the inventory position at the end of this period before
demand is realizedClearly the shortfall may be negativ&Vhen it is positive it
represents the difference between what the manufacturer likes to produce and what
the production capacity allows the manufacturer to prodWdeen the target inven-
tory level a;, is lower than the initial inventory position at the beginning of the
period the shortfall is negativerhe dynamics of the shortfall is

(41— @) +Sune D —C if (a1 — @) +Synei ¥ D >C
Smnsivr =10 ifO=<(a,,—a)+ Sy +Di=C
(@11~ &)+ Sunei + Dy if (.1 —a)+ Syne +D; <O.

(8)

If excessive stock is returned when the inventory position is higher than the order-
up-to level then the dynamics of shortfall procesda§y.i,m=0,1,...} fori =
1...,NisSiniic: = (@11 — & + Shnei + Dy — C) ™. We refer to this policy as an
order-up-to policy with returns

Proving that the shortfall process induced by a constant order-up-to policy has
a finite steady state average cost is known to be diffi@ég e.g., the appendix of
Kapuscinski and Taydd.5]). Proving that each of the shortfall processes induced by
a general cyclic order-up-to policy has finite steady state average cost and a single
irreducible positive recurrent class is even more difficult because of the more com-
plicated transition matrices

The following methods have been applied in the literature to address these
issuesAviv and Federgruen showed that(if) E(D/) < o for all positive integers
I=p+1andi=1,...,Nand(2) E(S,D;) < NC, then for any finite order-up-to
policy, the shortfall process has a finite set of states such that it can be reached with
finite expected cost from any starting stdf@puscinski and Tayur’s method has the
following two stepsThey first characterized the shortfall process under the order-
up-to zero policyThen they related a cyclic order-up-to policy to an order-up-to
zero policy and proved that in steady stafé|x;|?) andE(|s]?) are finite for a
cyclic order-up-to policy under similar conditions as those proved by Aviv and
Federgruennamely(1) E(D?**2) < co fori =1,...,Nand(2) E(SN.,D;) < NC.

In this sectionwe introduce a new approach to prove thaty.i, m=0,1,...},
the inventory positions at the beginningoN+ i th information periog{ ymnsi, M=
0,1,...}, the inventory position at the end of perioeN + i but before demand is
realized and{s,n:i,m= 0,1,...}, the shortfall in periodnN + i, induced by any
finite cyclic order-up-to policy give rise to Markov chains with a single irreducible
and positive recurrent class and finite steady state average cost under the same con-
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dition as Aviv and Federgruerthat is we require(1) E(D}) < oo for all positive
integerd = p +1andi=1,...,Nand(2) E(S,D;) < NC.

This is done as followsFirst, using the Foster’s criterion and the Lyapunov
function we show that the Markov chain induced by an order-up-to constant policy
has the following propertiesi) single irreducible and positive recurrent class and
(ii) finite steady state average cofhe same properties hold true for the Markov
chain induced by a cyclic order-up-to policy with returiiden we relate Markov
chains induced by a cyclic order-up-to policy and a cyclic order-up-to policy with
returns in a common state spachis allows us to provainder mild conditionghat
properties such as positive recurrence and finite steady state average cost hold true
for systems using a cyclic order-up-to policy if and only if they hold true for systems
using a similar policy with returns

We begin our analysis by presenting new proofs for the positive recurrence and
finite steady state average cost of the order-up-to zero pdlicgimplify the analy-
sis let us assume PD; < 0) = 0,0i.

ProrosiTION 3.1: Given order-up-to zero policy, the inventory positi¢rg i, M=
0,1,...} and{ymn:i,m=0,1,...} and the shortfall processn.i, m=0,1,...} for

i =1,...,N generate discrete-time Markov chains (DTMC) with single irreducible
and positive recurrent class K ; ED; < NC.

Proor: See the appendix for details u

The proof that the steady state average cost associated with an order-up-to zero
policy is finite is based on the following lemma

Lemma 3.2: Consider an irreducible and aperiodic Markov chdd,,n=0,1,...}
with a single period cost function(+). r(-) is continuous and bounded from below.
Assume that there exists a Lyapunov functidn) Vhapping the state space S to
[0,00) and a constant; such that

E{V(Xn+1) - V(Xn)‘xn = X} = —r(X) + n, Oxe s (9)

Then, given an initial statepwith V(xg) < oo, the Markov chain Xhas finite steady
state average cost if Xs positive recurrent.

This lemmais a variation of the Foster’s second criterion by Meyn and Tweedie
[23; see Theorem 18.1 (f-regularity)]; thus we omit the proof and refer to Simchi-
Levi and Zhad29] for technical detailsThe lemma implies the following

LemMma 3.3: Consider the order-up-to zero policy. If ;)*) < o« for all integers
0=k=p+1 OiandX,ED < NC, then in steady state, the following hold:

() E(Js|?) < oo, E(|X]”) < oo and E(]y;|?) < o foralli =1,...,N.
(i) Foro<pB<1,E(CroB"Yal?) <ccand E(ZioB"|X,|?) < oo for any
initial inventory position y and initial information period i.

Proor: See the appendix for details u



256 D. Simchi-Levi and Y. Zhao

Proposition 3L and Lemma 3 can be extended to any finite cyclic order-up-to
policy with returns as follows

ProposiTiON 3.4: Consider any finite cyclic order-up-to policy with returns. If
N L ED, < NC and E(D,)¥) = o for any positive integer k p + 1 and 0i, then
the following hold:

(i) Each shortfall proces$sh,nii, m=0,1,...},i =1,...,N, gives rise to a
Markov chain with single irreducible and positive recurrent class.
(i) E(|x{]?) <ooand E(|y{|?) < oo for alli.
(i) ForO<pB<1,ECioB"|yi?) <owand E(3 i oB"|x5|”) < oo forany
initial finite inventory position ¥ and initial information period i.

Proor: Assumea;,i = 1,...,N, to be the order-up-to level$Ve only need to
transform this policy to an order-up-to zero policy and then apply Propositibn 3
and Lemma 3.

Consideryf,n+i, the inventory positions at the end of periotN + i before
demand is realizedror simplicity we drop the subscriphN The system dynamics
isyfi1 = min{yl = D; + C,a11} = a1+ (Y — &1 — D + C)7, wherex™ =
min{0, x}. Letz/ =y —a; andD; =D; + (a;;1 — a;); thenz,,=(z — D/ + C)~
andX>\, D/ =3N,D; < NC. Forz andD/, this is order-up-to zero policywhere
demandD; can be negative but bounded from below

Notice that the shortfall processes associated with this order-up-to zero policy
have state spad®,1,2,...} even if demand can be negati(due to returin Using
proofs similar to those of Propositiornl3and Lemma 3, we can show that the same
results hold for this order-up-to zero policy if there exists a positive constaut
that PKD; < —d;} =0, Ji=1,2,...,N. u

We now introduce a method to construct and relate Markov chains induced by
a cyclic order-up-to policy and a cyclic order-up-to policy with returns in a common
state spaceConsider two inventory system®ne uses a cyclic order-up-to policy
and the other uses a corresponding policy with returhe key idea of the method
is to characterize the gap between the inventory position processes without,returns
VYmnsi, and with returnsyi,n. i, assuming that both inventory systems start with the
same initial inventory level and face the same stream of demand

LemMmA 3.5: Consider two inventory systems with cyclic order-up-to levgls g ay,

for N = 2: one system without returns and the second one with returns. If the
two systems start with the same initial statex max{as,...,a,} and face the
same stream of random demand, then the stochastic processes = Ymn+i —
Ymnei> M= 0,1,...} have the following properties for all i:

() Zmnei = 0forallm.
(i) Zmnei = max{ay,...,ant — min{ay,...,ay} for all m.
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Proor: The proof is by inductionClearly, z; = 0. Consider periodnN + i and
assume G zyn:i = max{ay,...,an} — min{ay,...,ay}. We distinguish between
the following two casesdn the first casea; = a; ., and in the second cas® > a; ;.

a; = a;4+1: There are two subcases to consid&)y Xmn+ir1 aNdX e 1 are no
larger thargy ;1. In this caseymnti+1 = MiN{Xmnriv1 + C &1} ANy =
min{Xpn+i+1 + C @11} and hence

0= Ymnti+1 YrrnN+i+1 = XmNi+1 — Xr21N+i+1 = Ymnwi yrrnN+i- (10)
(2) Xmnris1 = @41 = Xhnrive1- This can only occur ifN > 2 anda;j; <

max{ay,...,an}. Clearly Ymniivr = Xmnrivr @NdYnneicr = Min{Xfneic1 +
C, a1}, which implies that

0= Ymntits— Ymneit1 = Xmnrit1 ~ Xmnsic1 = Ymnei — Ymneie (11)
a; > a;1: Inthis case there are three possible subcd&ESmn i1 anNdXfnric1
are no larger thag ;.15 (2) Xmnti+1 > @i+1 = Xmni+15 (3) Xmnwi+1 @N0XGNg 41
are larger tham, , ;. The proof of the first two subcases is identical to the proof
in the previous cas€onsider subcase 3 and observe that in thisgagse 1 =
Xmnti+1 @NdYmnei 1 = @j41 and hence

0 = Ymnwit1 — Yinsi+1 = Xmnri+1 — @41 = Max{ay, ..., ay |
—min{ag,...,ay}. (12)
[ |
Remark: If X, > max{ay,...,ay}, then the state space f(a,n.i,m=0,1,...} is
{0,1,..., X, — min{ay,...,ay}}, Oi.

THEOREM 3.6: Consider two arbitrary irreducible DTMC$x,,n = 0,1,...} and
{yn,n = 0,1,...} starting with the same initial state. If their difference process
{z,=X,—VYn,N=0,1,...} hasfinite state spacg,3hen x,is positive recurrent if and
only if y, is positive recurrent. Also,»has certain finite steady state moments if and
only if the same steady state moments,ang finite.

Proor: First, we show thak, is positive recurrence i, is positive recurrentDe-
fine S andS; to be the state space f¢x,,n=0,1,...} and{y,,n=10,1,...}, re-
spectivelyAssume thay,, is positive recurrenusing contradictioywe assume, is
transient or nonrecurrent for all of its stagncey,, = x,, — z, andyy = Xo, We have

Priy, =i[Yo} = Pr{y, =i|Xo}
= > Pr{x,=1i+k z,=K|Xo}

kES,
= > Pr{z,=K|x,=1i+K X }Pr{x, =1+ K|X}

kES,
= D Pr{x,=i+Kk[xo}. (13)

kES,
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SinceS, has only a finite number of states argis transient or nonrecurrgnt
Pr{y,=ilyo} = 0 asn — oo for i € §,. This contradicts the assumption thatis
positive recurrentsee Kulkarn{ 20, p. 80, Theorem 3], and KemenySnell and
Knapp[19, p. 36, Prop 1-61]).

Secongassume thay, has finite steady state momer&sg|y|') for 0 < | = p,
wherep is a positive integeiConsider

2 “|pPI'{Xn:i|XO}: 2 Mlp 2 Pr{yn:i_k,zn:kb(o}

ies, ies, kES,
= > il? > Pr{z, = K|y, =i =K Yo}Pr{y,=1—K|yo}
ies, kES,
= > > li—k+k[Pr{y,=i—K|yo} (14)
kES, iES,

Taking the limitn — oo on both sideswe obtain
E(Ix?) = [SI(E(lyl?) + c.E(Jy]*"*) + ... + ¢,) <o, (15)

wherec,, ..., c, are positive finite constants ang,| is the size of the state space
for z,.
The necessary condition can be easily proved in a similar way u

Lemma 35 and Theorem.B provide a method to simplify Markov chains with
infinite state space and complicated dynamiemally, we have the following
corollary

CorOLLARY 3.7: Consider any finite cyclic order-up-to poliey. If 3\ ; ED, < NC
and E(D;)¥) = oo for all i and positive integers k such thatk p + 1, then the
following hold:

(i) Each shortfall procesg¢snn:i,m= 0,1,...}, i = 1,...,N gives rise to a
Markov chain with single irreducible and positive recurrent class.
(i) E(|x|?) < ooand E(Jy;|?) < oo for all i.
(iil) For0<pB<1,E(ZrioB"[%n|?) <ocand E(Z;ioB"|ynl”) < coforany
finite initial inventory position ¥ and initial information period i.
(iv) For0< B <1, we have

Ul (x,0) = E<,\|Aim > B k(X (X)) [ X = X) < .

v)

MN
E{Z Ok(Xi, Vi) | X = X}

lim ———. :

M—>c0 MN—-1+1

converges to a finite value independent of initial period i and initial state x.
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Proor: Parts(i)—(iv) are the direct results of Theoren63Lemma 35, and Prop-
osition 34; thus they do not need a proof

To prove par{Vv), notice thatS\ ; E(r;(x, y)) < oo in steady state is due to the
assumption that (x, y) ~ O(]x|?) + O(]y|?). Since the shortfall processes and thus
Ymnti @NdXmnyic1 give rise to Markov chains with single irreducible and positive
recurrent classwe let the steady state distribution fox, y) in theith information
period bep, ,), where(x, y) € Q' (the feasible region dfx, y)), thenE(r;(x, y)) =
Sxyea Plxy fi(X, Y) must converge since the summation is over at most a count-
able number of positive values and it is bounded from ab&weally, applying
Proposition 1-6Xarithmetic averageof Kemeny et al[19], the long-run average
cost converges and equals the steady state average cost u

4. A MARKOV DECISION PROCESS

Our objective in this section is to discuss the discounted and average cost criterion
and present finite optimal policies for the information sharing moBetf the dis-
counted cost criterignwe follow Aviv and Federgruefil] and specify conditions
under which the cyclic order-up-to policy is optimal and the optimal order-up-to
levels are finiteOther methods can be found in Heyman and Spb#l, Federgruen

and Zipkin[8], and Kapuscinski and Tay(it6].

For the average cost criteripBennot{25] and Federgruen et.db] introduced
conditions under which there exists an optimal policy for general Markov decision
processeSMDPs). Thus one way to characterize the optimal policy is to verify that
these conditions hold in our cada fact, Aviv and Federgruefil] and Kapuscinski
and Tayur{ 16] have applied this method in their analysis

We apply a different approach based on the vanishing discount métbothis
purposewe observe that in our modé¢he optimal policy under the discounted cost
criterion can be characterized by a finite set of critical numlgiees order-up-to
levels. Thus to prove the existence of an optimal policy under the average cost
criterion, we only need to specify conditionsee Theorem .8) for the optimal
order-up-to levels under the discounted cost criteriostead of conditions on the
entire policy

To specify these conditionsve apply a result from Aviv and Federgrugh;
namely that under certain conditignfie optimal order-up-to levels in the dis-
counted cost criterion are uniformly bounded for alkG = 8 < 1. We extend this
result to the information sharing mod&dee Proposition.2), in which ¢;(y) is
unbounded from both above and below for somehis resul together with the
results thatlong-run average cost s fii@orollary 37), implies that a cyclic order-
up-to policy is optimal under the average cost critefidheorem 43). We start by
presenting conditions under which the optimal policy in the discounted cost case is
a finite cyclic order-up-to policy

Following conventionwe index periods in a reverse order starting at the end of
the planning horizorLetm= 0 be the last ordering period ant= M — 1 be the first
ordering periodWe seti = N for the first information period and=1 for the last
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information period in any ordering perio@ihus periodmN + i represents thith
information period in thém— 1) st ordering periodFinally, let gmn: i (X, Y) =i (X, Y)
denote the single period expected cost in this information peviédrefer to this
indexing as backward index and we will only use backward index in this section

Let U2\, (x) be the minimum expected total costs if there muid + i periods
remaining in the planning horizoistarting with an initial state. Let the salvage
costU =0, and hence

Ui () = D/éi;]{gmv\m(x, y) + BEUnnii-2(y — D))}
= Min {r; (x, ) + BE(Uni-(y = D)), (16)

whereE(-) is the expectation with respectp. Observe that; (X, y) can be written
as the sum of a function of(¢;(x)) and a function of/ (¢;(y)), where

—CX, i=1
$i(x) = —(c+h;_y)x otherwise (37)
) = 1
@ (Y) (c+hi_1)y, otherwise (18)
Thus the following recursion must hoid
Ui i(X) = ¢ (X) + Vi (%),
Vi (X) = Min - {J2ui ()},
x=y=x+C
‘]rﬁN-H(y) =@i(y) + BE(UnéN-H—l(y_ Di)). (19)

Observe that in the very first information periad.e., information period
(M = 1)N + N = MN) of the entire planning horizogrwe have to addyx™ to
Uya,(x) to account for the holding cost of initial inventory

The dynamic programming model has the following properties

1. The cost functiom;(x, y) for each information period=1,..., Nis positive
and convex iry. Thus the following propertyproved in Kapuscinski and
Tayur[16], holds Ufy.i(x) = Uf,_1n:i(X) for anyx, m=1,...,M and
i=1,...,N.

2. 1;(x,y) = ¢i(X) + ¢;(y) forall i, and there exists a positive integeso that
¢i(x) ~ O|x|? andg;(y) ~ O|y|?. From Proposition F, the total expected
discounted cost using cyclic order-up-to policy is finit&f., ED, < NC
andE((D;)") < oo for any positive integel <= p + 1, Oi. This implies that
U/2\.i(X) converges pointwise to a finite value for any finikand for alli
(Heyman and Sobéll4, Thm. 8-13]). Let U;”(x) denote the convergence
point of U 5. (X).
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3. JE.i(y) is convex iny, for all mandi. Furthermorelim lyl—+oo Imni (Y) =
+oo for all mandi if 8N~z > ¢+ hy_;. The main difficulty in proving that
a cyclic order-up-to policy with finite target levels is optimal for this model
is that the functionp; (y) may be unbounded from both above and belBov
overcome this difficultywe need to aggregateé consecutive information
periods and identify conditions under which the cost function for all these
periods tends to positive infinity as the action variables approach either pos-
itive or negative infinity Following the analysis of Simchi-Levi and Zhao
[31], a sufficient condition iggN 17 > ¢ + hy_;. Intuitively, this condition
implies that the discounted penalty cost has to be larger than the sum of the
production cost and inventory holding cost for a single ordering period so
that the manufacturer should produce even in the first information period
given that the initial inventory position is sufficiently low

THEOREM 4.1: For the Markov decision process defined in Eq. (19), if

(@) SN,ED < NCandE(D;)'") < +oofor any positive integer p + 1, Oi,
(b) BNt > ¢+ hyoy,

then the following hold:

(1) Order-up-to policy is optimal for any m and i.

(2) Optimal order-up-to levelsiq,; are bounded as m> +oo.

(3) Jnnsi(y) convergestoidy) for ally, i, and every limit of §.; is @ minimal
point for J(x).

(4) Cyclic order-up-to policy is optimal under the discounted cost criterion.

Proor: Sincel5y.i(y) is aconvex function of and liMmy e JEri(y) = +oofor

all m andi, the order-up-to policy is optimal for ath andi. SinceU/\.:(x) is
bounded from above for amgand finitex, order-up-to levels are finite as — +oo
because ofb) (see the proof of Theorem 2 in Aviv and Federgr{ig]). Notice that
U2\ (x) is nondecreasing and convergesitf( x), which impliesd.2. (y) is non-
decreasing and convergessay J (y), due to the monotone convergence thearem
Hence part 3 is trugalso see the proof of Theorem 2 in Aviv and Federgriugn
Finally, parts 1-3 imply that cyclic order-up-to policy is optimal under the dis-
counted cost criterian n

We now extend Theorem(B) of Aviv and Federgruefil] to our model

ProrosiTioN 4.2: For the Markov decision process defined by Eq. (1), if the
conditions of Theorem 4.1 are satisfied, then the optimal order-up-to lefgls:y
1,2,...,N, under the discounted cost criterion are uniformly bounded both from
above and from below for afy<e =8 < 1.

Since the extension follows a similar proof technique to the one in Aviv and
Federgrueywe omit the proof and refer to Simchi-Levi and Zh&@9] for technical
details We are ready to characterize the average cost criterion
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THEOREM 4.3: Consider the information sharing model and assume the following:

(a) Cyclic order-up-to policy is optimal under the discounted cost criterion.

(b) Forall 0 <e=p <1,the optimal order-up-to levels under the discounted
cost criterion are uniformly bounded both from above and from below.

(c) Thelong-run average cost of any finite cyclic order-up-to policy converges
to a finite value.

If these conditions are satisfied, then a cyclic order-up-to policy is optimal under the
average cost criterion.

Proor: Consider a sequence g4, 52,...,,81,...T1 asj — co. Since the optimal
order-up-to levels under the discounted cost criterion are uniformly bounded from
both above and below for all & € = 8 < 1, there must exist a finite cyclic order-
up-to policyf and a subsequenje— oo so thaff is the optimal policy for alU, *»(x),
Oi=12,...,N.

Since we can show that for any finite cyclic order-up-to policy

E{E k(X (X)) [ X = X}

k=i

M—co MN—-i1+1

converges to a finite value which is independent of the initial peraod initial state
X (see Corollary ¥); then by Tauberian theoryHeyman and Sobégll4, p. 172]),

Gi(x,f) = fim (1= £, )U ()

= lim sup((1 - B Ui%(x))
=G(x,6), 06 €Il x,i. (20)
The last inequality is justified by the Lemma A2 of Senrj@5). u
Finally, we combine Theorem.3, 4.1, Corollary 37 and Proposition 2, to get
CorOLLARY 4.4: In the information sharing model, if

(@) SN, ED; < NCand H(D;)") < +oo for any positive integer£ p + 1, 0i,
(b) IBN_l’?T >cCc+ hN—lv

then cyclic order-up-to policy is optimal under the average cost criterion.

5. COMPUTATIONAL RESULTS

In this sectionwe report on an extensive computational study conducted to develop
insights about the benefits of information shati@yr goal is to determine situa-
tions in which information sharing provides significant cost savings relative to sup-
ply chains with no information sharing in the infinite time horiz&or this purposge
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we first examine the impact of the production capacity and the frequency and timing
of information sharing on cost savingghis is followed by a systematic comparison
between finite and infinite time horizons far.d. external demandrhen we study

the impact of independent but nonstationary demand on the benefits of information
sharing In the computational stugdwe focus on the average cost criterion and com-
pute the optimal order-up-to levels and cost by employing(P4 9] and Glasser-

man and Tayuf12]).

In the model with no information sharingve assume that the retailer only
places orders to the manufacturer at the end of each ordering p8irax the de-
mand is backlogged and the retailer uses an order-up-to policy with constant order-
up-to level the order placed by the retailer is equal to the total demand in one
ordering periodrFurthermorewe assume that the manufacturer knows the retailer’s
ordering policy andtherefore the demand distribution of one ordering peri&at
nally, we assume that the manufacturer has the same production capacity per infor-
mation period and charges the same inventory holding cost per item per information
period in the no-information-sharing model as in the information sharing model

The model with no information sharing can be considered as a special case of
the information sharing modelndeed consider an instance of the model with no
information and construct an information sharing model in which demand in every
information period within an ordering period is exactly zero except in the last infor-
mation period Demand in this information period equals the total demand during
that ordering periodThis information sharing model has the same dynamic pro-
gramming formulation as the model with no information sharirgus the dynamic
program designed to solve the information sharing model can be applied to solve the
model in which information is not shareiinally, a finite cyclic order-up-to policy
is optimal for the model with no information sharing under both the discounted and
the average cost criterion

In all of the numerical studiesve set the production cost= 0 and focus on
holding and penalty cost3he initial inventory positionx, at the beginning of the
first ordering period is set to be zero without loss of generality

5.1. i.i.d. Demand

In this subsectionexternal demand is assumed to beli To identify situations in
which the manufacturer can achieve significant benefits from information sharing
and to compare the cost savings between finite and infinite time hotinanex-
amine the cases with variation of the following parametarsduction capacitythe
number of information periods in one ordering petiadd the time when informa-
tion is shared

5.1.1. The effect of production capacity. To explore the impact of produc-
tion capacity on the benefit of information sharing in an infinite time horjzeoa
illustrate in Figure 1 the percentage cost savings from information sharing relative to
no information sharing as a function of the production capatiyompare with the
finite time horizon we also show in Figure 1 the percentage cost savings from
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Ficure 1. The impact of the production capagity.d. demand

information sharing when the planning horizon includes only one ordering period
(Simchi-Levi and Zha$28]).

The demand distribution of one information period are PoigSpand Uni-
form(0,1,...,9), and there are four information periods in each ordering pefibd
inventory holding cost per ordering period is set to be a constant $4 per unit product
for all casesThus the inventory holding cost per information period is $1 per.unit
For each demand distribution and each capacity Javelconsider the cases where
the ratio of penalty cost to holding costs in one ordering period i34

The computational study reveals thas production capacity increasése cost
saving percentage increases in both finite and infinite time horidodsed it in-
creases from about 5% to about 35% as capacity over mean demand varies2from 1
to 3. Thisis quite intuitivesince as production capacity increaghe optimal policy
would postpone production as much as possible and take advantage of all informa-
tion available prior to the time production star@milarly, if the production capac-
ity is limited, then information is not very beneficial because the production quantity
is mainly determined by capacityot realized demand

We would like to point out that this resultis valid only when production capacity
is finite. Indeedif production capacity is large enoug@hg., infinite), then the manu-
facturer’s optimal production policy is obviously to produce to ordéwus in this
case the manufacturer does not benefit from information sha@hgpursein prac-
tice, many manufacturers have limited production capacity and thus they produce to
stock Hence we limit our computational study to situations in which the ratio of
production capacity to mean demand in one ordering period is no more than 3

Secondwe observe that the differences of the percentage cost savings between
one ordering period and infinite time horizon is quite spyalen if we use different
computational methods.e., IPA for an infinite time horizon and dynamic program-
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ming for the one ordering period cas&inally, similar to the finite horizon case
(Simchi-Leviand Zhap28]), our computational study reveals that information shar-
ing and no information sharing have almost identical fill rates

5.1.2. The effect of the frequency and timing of information sharing. ToO
understand the impact of the frequency of information sharing in the infinite time
horizon casgin Figure 2 we display the percentage cost savings from information
sharing as a function of the number of information periods in one ordering period
for both finite and infinite time horizon caseBhe number of information periods
N, was twq four, six, and eight whereas the length of the ordering period was
assumed to be constant in all casBise demand distribution during the entire or-
dering period is assumed to be Poisson with paramete®4; hencedemand in a
single information period is Poisson with parametgN. Similarly, the inventory
holding cost per ordering period is set up to be a constant $4 per unit prathust
the inventory holding cost per information period ig\N4 whereN is the number of
information periods within one ordering periotiotal production capacity in the
entire ordering period is kept constant and is equally divided among the different
information periodsFinally, the ratio of penalty to holding costs is set to bé3lin
all cases

Figure 2 implies that as the number of information periods incrediseger-
centage savings increastowever the marginal benefit is a decreasing function of
the number of information periodSpecifically the additional benefit achieved by
increasing the number of information periods from four to eight is relatively small
Finally, the difference between the cost savings obtained in finite and infinite time
horizons is relatively small

30

\
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—&—Infinite, Capacity/Mean
demand = 2

—8—Infinite, 4/3

/
Joo— |

0

Cost savings (%)
o

e
o

0 2 4 6 8 10
Number of information period in one ordering period

FiGure 2. The impact of the frequency of information sharing
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To understand the impact of the time when information is shared and the opti-
mal timing of information sharing in infinite time horizowe analyze the following
case in which the retailer only shares demand information once with the manufac-
turer in one ordering periodh this casewe equally divide 1 ordering period into 10
intervals and compute the total cost for the manufacturer when the retailer shares
demand information with her at one of these intervals

Figure 3 presents the total cost of the manufacturer as a function of time when
information is sharedrigure 3 provides normalized cost as a function of normalized
time; that is time is normalized and is measured from zero to,omeile cost is
normalized byhy NED, whereEDis the expected demand in one information period
Thus 0 in thex coordinate implies that information is shared at the beginning of an
ordering periogdand 1 means that information is shared at the end of an ordering
period and hence cannot be usBémand distribution is assumed to be Poig2di
and the ratio of penalty to holding costs is 4

Figure 3 implies that the optimal timing for information sharing is in the second
half of the order intervalThis is true both in the finite and infinite horizon models
Intuitively, when capacity is very largé is appropriate to postpone the timing of
information sharing to the last production opportunity in this ordering penter-
estingly this is also the right thing to do when capacity is tightly constraified
postpone the timing of information sharing until the last production opportunity
One possible explanation is that when capacity is very tihstmanufacturer needs
to build as much inventory as she can until the last production opportwiign she
can review demand information and adjust production quantity

0.6

=& Infinite, Capacity/Mean
- demand =3
g 03 ——Finite, 3
o

== Infinite, 2

——Finite, 2

—i—Infinite, 1.67

—=—Finite, 1.67

0.1

0 0.2 0.4 0.6 0.8 1
Timing of information sharing

Ficure 3. The impact of the timing of information sharing for different levels of
production capacityi.i.d. demand
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5.2. Nonstationary Demand

In this subsectioypwe study the impact of independent but nonstationary demand on
the benefits of information sharing in an infinite time horizon c&se this purposge
we first compare the percentage cost savings obtained in two systeen$acing
i.i.d. demand and the other facing independannstationary demand distributians
Then we examine how nonstationary demand affects the optimal timing of infor-
mation sharing

To generate the nonstationary demand prqgogesnodeled demand as a non-
homogenous Poisson process and considered the following two sce maeios-
wise increasing rate and piecewise decreasing demand rate

In particular demand follows Poissdn (t)) distribution fort € [0,T]. The
demand rata (t) is a piecewise constant simple functjamdf, A(t) dt= A, where
A is the total average demand in one ordering perkssuming that there ard
information periods in one ordering period ahg) is a constant in every informa-
tion period we can write itas\(n),n=1,...,N.

DefinedA to be the difference between the highest demand rate and the lowest
demand rate in one ordering period andiat=[N/(N — 1)] dA. Then we determine
the increasing\(n) as follows

A AL AA

M) == - = +—
V=N"2"

)\2—)\1—|-M
@ =0+

/\(n+l)=)t(n)+%, n=2,....,N—1 (21)

The decreasing (n) can be determined by reversing the index of informa-
tion periods It is easily seen thak(n) satisfies the conditiorjoT)\(t) dt=A.To
create a comparabld.d. demand distributionwe let the demand distribution be
PoissoriA/N) in every information period

To study the impact of nonstationary demand on cost sayimgshow in Fig-
ure 4 the percentage cost saving from information sharing as a function of produc-
tion capacity with increasinglecreasingand ii.d. demandin all casesN = 4 and
each ordering period is equally divided inkbinformation periodsWe choose
A =20, AA = 6, and the ratio of penalty to inventory holding cost in one ordering
period to be 475.

Figure 4 illustrates that nonstationary demand has a significant impact on the
benefit from information sharing’he percentage cost saving is the smallest when
the demand rate is increasiramd it is the highest when the demand rate is decreas-
ing for all production capacity level&or instancgethe difference between the per-
centage cost saving of increasing and decreasing demand rates is about 15% when
the ratio of capacity to mean demand is 2
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FiGURE 4. The impact of production capacjtyon-ii.d. demand

This is quite intuitive because in the case of decreasing demandeatezed
demand in the first few information perigdsn averaggeaccounts for a larger por-
tion of the total demand in one ordering period relative to increasing demand rate
Indeed an extreme example of increasing demand rate is that demand is exactly zero
in all information periods except the last omethe lastinformation perigdiemand
equals the total demand in one ordering perislwe show in Section,3his ex-
ample is equivalent to a model with a no-information-sharing .c&gailarly, an
extreme example of the decreasing demand rate is that demand is exactly zero in all
information periods except for the first arla the first information perioddemand
equals the total demand in one ordering period, dihce information has a sig-
nificant impact on the manufacturer’s cost

To study the impact of nonstationary demand on the optimal timing of informa-
tion sharingwe present in Figure 5 the manufacturer’s cost as a function of the time
when information is share@he ratio of production capacity to mean demand in one
ordering period is 2Me use the same settings as in Sectidnexcept that we allow
for nonstationary demand distributigrvghereA = 30 andAA = 4.

In Figure 6 we demonstrate the optimal timing of information sharing as a
function of the production capacity in the cases of increasing and decreasing demand
rates

Figures 5 and 6 suggest the following observations

« Information sharing is most beneficial in the case of decreasing demand rate
and it is least beneficial in the case of increasing demand &itesn that
demand information is shared only once in one ordering petiwdpercent-
age cost saving in the case of decreasing demand rate can be as much as 17%
whereas it can only be as much as3e4 in the case of increasing demand
rate
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 Figures 5 and 6 show that demand information should always be shared ear-
lier in the case of decreasing demand rate relative to increasing demand rate
for different ratios of production capacity to mean demakdr example
when the ratio of capacity to mean demand equdlsig. 5), it is optimal to
transfer demand information as early a6 On a scaled time horiz9grin the

0.9

0.8

N

0.7

e

0.6

0.5

0.4

0.3

Optimal timing for information sharing

0.2

0.1

[ == Increasing demand
- Decreasing demand

i

0.5 1 15 2 25 3
Capacity/Mean demand

35

FiGURE 6. The impact of non-i.d. demand on the optimal timing of information

sharing
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case of decreasing demand ratdnereas in the case of increasing demand
ratg the optimal timing of information sharing is as late a8.0

* This is quite intuitive because when demand rate is decreasiogt of the
demand faced by the retailer is realized close to the beginning of the ordering
period On the other handvhen the demand rate is increasingpst demands
are realized close to the end of the ordering periduis it is better to share
information earlier and leave more time for production in the decreasing de-
mand rate case

6. CONCLUSION

In this article we analyze the value of information sharing in a two-stage supply
chain with a single manufacturer and a single retailée manufacturer has finite
production capacity and she receives demand information from the retailer even
during periods of time in which the retailer does not make ordering decisfons
similar model is studied by Simchi-Levi and Zhg28] in the finite time horizon
case the current article extends the analysis to the infinite time horizon case

For this purposgewe first show that for any finite cyclic order-up-to polidhe
associated inventory positions and shortfalls give rise to Markov chains with a sin-
gle irreducible positive recurrent class and a finite steady state averageTduest
proof is based on the Foster’s criterion and Lyapunov functsnwell as a new
method to relate Markov chainBhis, together with the observation that the optimal
policy under the discounted cost criterion can be characterized by a finite set of
critical numbersenables us to provide a simple proof for the optimality of cyclic
order-up-to policy under the average cost criterion

Interestinglythis approach can be applied to prove the existence of an optimal
policy under the average cost criterion for other MDPs with unbounded. d&mts
this purposethe optimal policy in these MDPs under the discounted cost criterion
must be characterized by a finite set of critical numbers—for instangentory
models with setup cost where the optimal policy under the discounted cost criterion
is an(s, S) policy.

Using an extensive computational studse demonstrate the potential benefits
of information sharing on the manufacturer’s cost and service.lgvparticularwe
observe that the percentage cost savings due to information sharing increases as
production capacity increasebhis is true in both finite and infinite time horizon
models We also observe that nonstationary demand may have a substantial impact
on both the benefits from information sharing and the optimal timing of information
sharing For instanceif the demand rate is increasijtfpe benefit from information
sharing is not as high as that of decreasing demand rate
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APPENDIX

Proof of Proposition 3.1

Let us first consider the shortfall process,n.n, M= 0,1,...} forn=1,...,N. We start our
proof by assuming.i.d. demandD with meanED. Without loss of generalifywe assume
initial statexg = 0, since states larger than zero are transi8irice

=0, Oi=0
Pr{D =i}

=0 otherwise

the shortfall procesis, n=0,1,...} has state spac={0,1,...} and transition functios, =
(s-1+ D — C)™*. Thus the transition matrix is

PiD=C}! Pr{D=C+1 Pr{D=C+2}
PiD=C-1} Pr{D=C! Pr{D=C+1}
PiD=C-2} Pr{D=C-1} Pr{D=C}
P= : ) (A.1)
Pr{D = 0} Pr{D =1} Pr{D = 2}

0 Pr{D = 0} Pr{D =1}

Letd(i) =E(ss1—sls=1) =Zjes(j —1)P;. If i =C,
d(i) = i[(j +i-C)—ilPD =j}
2

=S (j-cPrD=j}
j=0

=ED-C. (A.2)
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Ifi<C,

d(i) = fiPr{DSCfi}Jri(i*i)Pr{D=C+jfi}
j=1

:(C—i)Pr{D<C—i}+§:(C+j—i)Pr{D=C+j—i}—C
j=0
=(C-i)P{D<C—i}+ED-C

< o0. (A-3)

So from Pakes’ lemmeéKulkarni[20]), the shortfall process of order-up-to zero policy with
i.i.d demand is positive recurrentiD < C.

Assume that demands in different periods are independent of eachtbthersult can be
easily extended to systems with periodical demapd,, ..., Dy for any finiteN (see Simchi-
Levi and Zhad 29] for technical details

The relationship betwegpands; is s = —y;, and we also have . ; = min{0, x; + C} —

D;. The proofs of positive recurrence ferandy; are similar

Proof of Lemma 3.3

To prove thefirst part of the lemmait is sufficient to show the existence of a Lyapunov
functionV satisfying the requirement of Lemma23
We start by analyzingi.d. demand Dvith meanED. LetV(x) = q,(x+ C)”** andq, =
1/(p +1)(C — ED). Clearly, V(-) maps the state space of the short&# {0,1,2,...} toR™.
Ifi=C,

E(V(si+1) = V(s)Is, = 1) =q, 2 [(j +)*** = (i + C)»**]Pr{D = j}

j=0

r+1/p+1
=4q, >, ‘ (m— CHirtik (A.4)
k=0

wheremy = X7, *Pr{D =} is thekth moment of demandrurther expanding the equation
we obtain

E(V(sh1) = V(s)Is, = 1)

p+1
=—i’+ q{( ) )(mz— C2ir 1+ ..+ (Mg — C””)]. (A.5)

Ifi <C,
E(V(shi1) — V(s))Isn = 1)

=q,|(Crr=(i+C)"H)P{D<C—i}+ i [(j+i)y*"t=(i+C)r*]Pr{D = j}]

j=C—i

—q,|crtprD<C-i}+ 3 (j+i)”*1Pr{D:j}—(i+C)’”1]
=C—i

j i

L ]

—q| 3 [Cr - (41 IPHD = [+ D+ i +c>p+1]Pr{D—j}].
=0 j=0

(A.6)
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To summarizein both cases

E(V(shi1) — V(s)s, = 1)
pt+1
—qup(C,i)—i”-i-qp[( ) >(m2—c2)iﬂ1+...+(mp+1—cn+1), (A7)

where
0, i=C
C—i

ciyleis A8
gp( I) [CP+17(J+|)p+l]Pr{D:J}’ OS|<C. ( )

i=0

Define the single-period cost function as

pt1l pt1
r,(x)=x"— qp[< 2 )(mz— Co)xPt+...+ < ) >(mp — Cf’)x], (A.9)

and sincem, < +oo for all positive integek = p + 1, then from Lemma 2 and Proposi-
tion 3.1, steady-state average cost is finite for the shorgfalith single-period cost function
r,(X).

In fact, if the single period cost function i5(x),J0 < | < p, where

| +1 | +1
rl(x)zx'—ql[< ) >(m2—02)x'1+-.-+< | >(m|—C')x], (A.10)

the same analysis shows that the corresponding steady state average cost is finite for the
shortfalls,.

Finally, our objective is to show that if the single period cost function'isthen the
steady state average cost of the shortfall is firli@ this purposewe use induction oh The
casel = 1 is obvious since we already know that fo(x) = x, the steady-state average cost
is finite. By induction onl and the fact that steady-state average cost of the shortfall is finite
forr(x), 0 < < p, we obtain our result

We can extend the result to independent demand with periodicatiyngdistributions
Dy, Ds,..., Dy inasimilar way by defininy/ (x) = Q,(x+NC)#*t andQ, =1/(p +1)(NC—

SN L ED,). We omit the proof and refer the readers to Simchi-Levi and ZB&bfor tech-
nical details

We now prove thesecond parbof the lemma Sinces is nonnegativethe monotone
convergence theorem implies that

E(%B‘ISI”) = ;B‘EISI”' (A.11)

Because of the first part of this lemma aneQB < 1, this summation is for a power series
with positive and bounded coefficien® it is finite

Since the inventory position processges —s; andx;.; = y; — Dy, it is easy to show that
the same arguments hold fgrandx;. u



