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We study the value of information sharing in a two-stage supply chain with a single
manufacturer and a single retailer in an infinite time horizon, where the manufac-
turer has finite production capacity and the retailer faces independent demand+ The
manufacturer receives demand information even during periods of time in which
the retailer does not order+Allowing for time-varying cost functions, our objective
is to characterize the impact of information sharing on the manufacturer’s cost and
service level+We develop a new approach to characterize the induced Markov chains
under cyclic order-up-to policy and provide a simple proof for the optimality of
cyclic order-up-to policy for the manufacturer under the average cost criterion+
Using extensive computational analysis, we quantify the impact of information
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sharing on the manufacturer’s performance in an infinite time horizon under both
i+i+d+ demand and independent but nonstationary demand+

1. INTRODUCTION

Information technology is an important enabler of efficient supply chain strategies+
Indeed,much of the current interest in supply chain management is motivated by the
possibilities introduced by the abundance of data and the savings inherent in sophis-
ticated analysis of these data+ For example, information technology has changed the
way companies collaborate with suppliers and customers+These collaborations,which
allow companies to share sensitive demand information with their suppliers in real
time, have achieved huge success in practice in terms of inventory reduction, service
level improvement, and quick response to market changes~Stein and Sweat@31# !+

The benefits of sharing demand-related information among supply chain part-
ners has been explored by many authors: for example, the Bullwhip effects reduction
~Lee, Padmanabhan, and Whang@21# and Chen, Drezner, Ryan, and Simchi-Levi
@5# ! and the inventory cost reduction~Hariharan and Zipkin@13# ,Gallego and Ozer
@10#,Gavirneni,Kapuscinski, and Tayur@11# ,Aviv and Federgruen@2# ,Cachon and
Fisher@3# , Chen@4# , and Simchi-Levi and Zhao@28# !+ These studies cover a broad
range of production–distribution systems, such as single-supplier and single-retailer
systems~Gavirneni et al+ @11# , Simchi-Levi and Zhao@28# !, single-supplier,multi-
retailer systems~Aviv and Federgruen@2# , Cachon and Fisher@3# !, and multistage
series systems~Chen@4# and Chen et al+ @5# !+An excellent review of recent research
can be found in Cachon and Fisher@3# +

In this article, we focus on a single capacitated manufacturer serving a single
retailer+ The retailer faces independent demand and the objective is to analyze the
impact of information sharing on the manufacturer’s cost and service levels+ The
impact of information sharing on a capacitated manufacturer has been analyzed by
several authors+ Aviv and Federgruen@2# analyzed a single-supplier, multi-retailer
system in which retailers faced random demand and shared inventories and sales
data with the supplier+ They analyzed the effectiveness of a Vendor Managed Inven-
tory ~VMI ! program where sales and inventory data are used by the supplier to
determine the timing and the amount of shipments to the retailers+ For this purpose,
they compared the performance of the VMI program with that of a traditional, de-
centralized system, as well as a supply chain in which information is shared contin-
uously, but decisions are made individually~i+e+, by the different parties!+ Their
focus in the three systems analyzed was on minimizing long-run average cost+Aviv
and Federgruen reported that information sharing reduces systemwide cost by 0–5%,
whereas VMI reduces cost, relative to information sharing, by 0+4–9+5% and on
average by 4+7%+ They also showed that information sharing could be very benefi-
cial for the supplier+

The work by Gavirneni et al+ @11# analyzed a two-stage supply chain with a
single capacitated supplier and a single retailer+ In this periodic review model, the
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retailer made ordering decisions every period, using an~s,S! inventory policy, and
transferred demand information every time an order decision was made, indepen-
dent of whether an order was made+ Assuming zero transportation lead time, they
showed that the benefit~i+e+, the supplier cost savings due to information sharing!
increased with production capacity and it ranged from 1% to 35%+

The focus of this article is on the benefits of information sharing for a capaci-
tated supplier in a two-stage supply chain with an infinite time horizon+ In this
model, the retailer shares demand information with the supplier even at times during
which she does not make order decisions+ This is clearly the case in many industries
in which demand information can be shared very frequently~e+g+, every second or
every minute! while orders are placed less frequently~e+g+, every day or every week!+
A recent article by Simchi-Levi and Zhao@28# studied this model in a finite time
horizon setting+ They show that by sharing demand information, the supplier can
reduce its inventory cost substantially while maintaining the same service level to
the retailer+

The optimal control of a periodic review production–inventory system in an
infinite time horizon is a classical Markov decision problem with infinite state space
and unbounded cost function+ The literature on these problems is quite voluminous
~see, e+g+, Heyman and Sobel@15# and Puterman@24# for a general theory of the
Markov decision process; Karlin @17# , Zipkin @32# , Sethi and Cheng@27# , and Song
and Zipkin@30# for systems with time-varying parameters; Federgruen and Zipkin
@7,8# for systems with production capacity constraints!+ Finally, Aviv and Feder-
gruen@1# and Kapuscinski and Tayur@16# have analyzed periodic review production–
inventory systems with capacity constraints and time-varying parameters and their
results are most relevant to our model+ They show that a modified cyclic order-up-to
policy ~i+e+, a modified order-up-to policy with periodically varying order-up-to
levels! is optimal under both discounted and average cost criterion+ This is done
by verifying the optimality conditions developed by Sennott@26# and Federgruen,
Schweitzer, and Tijms@6# +

In the next section, we describe our model and identify the differences between
our model and results and those of Aviv and Federgruen@1# and Kapuscinski and
Tayur@16# +

2. THE MODEL

Consider a single product, periodic review, two-stage production–inventory system
with a single capacitated manufacturer and a single retailer facing independent de-
mand and using an order-up-to inventory policy+ In practice, many retailers place
orders periodically~e+g+, every week or every month!+ Thus, we assume that the
retailer places an order everyT time periods~e+g+, 7 days! to raise his inventory
position to a target level+ The manufacturer receives demand information from the
retailer everyt units of time~t # T !+ For instance, the retailer places an order every
week but provides demand information every day+ We refer to the time between
successive orders as theordering periodand the time between successive informa-

VALUE OF INFORMATION SHARING 249



tion sharing as theinformation period+Of course, in most supply chains, information
can be shared almost continuously~e+g+, every second! while decisions are made less
frequently~e+g+, every day!+ Thus, information periods really refers to the time in-
terval between successive uses of the information provided+

The sequence of events in our model is as follows+ At the beginning of an
ordering period, the retailer reviews her inventory and places an order to raise the
inventory position to the target inventory level+ The manufacturer receives the order
from the retailer, fills the order as much as she can from stock, and then makes a
production decision+ If the manufacturer cannot satisfy all of a retailer’s order from
stock, then the missing amount is backlogged+ The backorder will not be delivered
to the retailer until at least the beginning of the next ordering period+ Finally, trans-
portation lead time between the manufacturer and the retailer is assumed to be zero+
Similarly, at the beginning of aninformation period, the retailer transfers POS~Point
of Sales! data of previous information period to the manufacturer+ Upon receiving
this demand information, the manufacturer reduces this demand from her inventory
position although she still holds the stock, and then she makes a production decision+

To simplify the analysis, we assume that demand is stationary across the order-
ing periods, whereas the demand distribution may vary across different information
periods within one ordering period+ For example, grocery retailers typically face
much higher demand during weekends than week days+ At the same time, these
retailers are replenished once a week+ Since grocery retailers cannot anticipate fu-
ture shortages from the manufacturer, they are not able to inflate order-up-to levels
to protect themselves from future shortages+Hence,we assume in our model that the
retailer’s target order-up-to level is constant for all the ordering periods; that is,
every ordering period, the retailer raises her inventory position~outstanding order
plus on-hand inventory minus backorders! to a constant level+ Any unsatisfied de-
mand at the retailer is backlogged; thus, the retailer transfers external demand of
each ordering period to the manufacturer+ The manufacturer has a production capac-
ity limit ~i+e+, a limit on the amount the manufacturer can produce per unit of time!
and the manufacturer runs her production line always at this capacity limit+

Let N5 T0t be an integer which represents the number of information periods
in one ordering period+ We index information periods within one ordering period
1,2, + + + ,N, where 1 is the first information period in the ordering period andN is the
last+ Let C denote production capacity in one information periodt, c is the produc-
tion cost per item, and 0, b , 1 is the time discounted factor for each information
period+

Since we calculate inventory holding cost for each information period, we leth
be the inventory holding cost per unit product per information period+Evidently, one
unit of product kept in inventory forn information periods, n5 N,N21, + + + ,1, will
incur a total inventory costhn 5 h~11 b 1{{{1 bn21!+

Due to the finite production capacity, the manufacturer produces to stock+ For
every item backlogged at the end of each ordering period, the manufacturer paysp
as a penalty cost+ It is easy to see that the earlier the manufacturer produces during
a single ordering period, the longer she will carry this inventory, thus the higher the
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inventory holding cost+ On the other hand, postponing production too long may
result in heavy penalty cost due to the finite production capacity+

We useDi to denote the end-user demand in the information periodi , i 51, + + + ,N+
Di is assumed to be independent, its distribution only depends oni , and its mean is
defined asEDi + To simplify the analysis, we assume that costs do not change from
information period to information period; later, we will demonstrate that our results
can be easily extended to include cases where costs change periodically within one
ordering period but are the same across different ordering periods+

We start by considering a finite time horizon model withM ordering periods+
Index the ordering periods from 0 toM 21, where the 0 ordering period is the first
one and theM 21 ordering period is the last one+ The finite horizon starts in the first
ordering period at the beginning of thej th information period, 1# j # N+ Consider
the i th information period, i 51,2, + + + ,N, in ordering periodm,m5 0,1, + + + ,M 21+
Of course,mN1 i $ j+We refer to this information period as themN1 i information
period+ For instance, information periodmN11 is the first information period in the
mth ordering cycle+ We refer to this indexing convention as a forward indexing
process+

Define x to be the inventory position at the beginning of thei th information
period, andSi to be the state space forx+ Let y 2 x be the amount produced in that
information period, y[ Ax, andAx be the set of feasible actions+ Letj~x, y,D! be the
transition function andD be the demand+ In our case,Ax5 @x, x1C# andj~x, y,D!5
y 2 D+

It is easy to verify thatgmN1i ~x, y!, i 5 1,2, + + + ,N, m 5 0, + + + ,M 2 1, the ex-
pected inventory and production cost in information periodmN1 i, given that the
period starts with an inventory positionx, and y 2 x items are produced in that
period, can be written as

gmN1i ~x, y! 5 Hc~ y 2 x! 1 E~L~ y,DN !!, i 5 N

c~ y 2 x! 1 hN2i ~ y 2 x! otherwise,
(1)

whereE~{! is the expectation with respect toDN and

L~ y,D! 5 hN ~ y 2 D!1 1 p~D 2 y!1+ (2)

Because the items produced in thei th information period are carried over until the
end of the ordering period, an inventory holding cost equal tohN2i ~ y2x! is charged
in this information period+

SincegmN1i ~x, y! depends only oni and notm, we can writegmN1i ~x, y! 5
ri ~x, y!, ∀m 5 0,1, + + + ,M 2 1 and ∀ i 5 0,1, + + + ,N+ Furthermore, ri ~x, y! can be
written as the sum of a function ofx ~fi ~x!! and a function ofy~wi ~ y!!, where

fi ~x! 5 H2cx, i 5 N

2~c 1 hN2i !x otherwise,
(3)

wi ~ y! 5 H cy1 E~L~ y,DN !!, i 5 N

~c 1 hN2i !y otherwise+
(4)
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Finally, we assume the salvage cost functiongMN11 5 0+
We define the optimal policy under the discounted cost criterion as follows+ Let

s 5 $s1,s2, + + + % be any feasible policy wheresk is a function depending on the
initial inventory position in periodk ~i+e+, sk 5 sk~x! andsk~x! [ Ax for all k!+ Let
P be the set of all feasible policies+ Define the expected discounted cost from the
i th information period in the first ordering period until the end of the horizon when
M r `, as

Ui
b~x,s! 5 ES lim

Mr`
(
k5i

MN

bk2igk~xk,sk~xk!!6xi 5 xD, (5)

whereE~{! denotes the expectation with respect to demand in all information peri-
ods andxi is the initial inventory position of thei th information period fori 5
1,2, + + + ,N+ A policy s * 5 $s1

*,s2
*, + + + % [ P is called optimal under the discounted

cost criterion if for allx [ Sandi ,

Ui
b~x,s * ! 5 inf

s[P
Ui

b~x,s!+ (6)

Similarly, the optimal policy in an infinite time horizon under the average cost
criterion can be defined+ Following Heyman and Sobel@14# , the performance mea-
sure for any feasible policyd 5 $d1,d2, + + + % [ P under the average cost criterion is
defined as

Gi ~x,d! 5 lim
Mr`

supS EH(
k5i

MN

gk~xk,dk~xk!!6xi 5 xJ
MN 2 i 1 1

D+ (7)

A policy d * is optimal if it minimizesGi ~x,d! for all x andi overP+
It is easily seen that in the information sharing model, except for those periods

in which orders are placed, the cost functionwi ~ y! tends to negative infinity as
y r 2` ~ y r 2` implies that the manufacturer allows for infinite backorders!+
This is true because although demand is observed by the manufacturer in every
information period, it only needs to be satisfied at the end of every ordering period+
Thus, the penalty cost is charged only at the end of ordering periods, whereas the
inventory holding cost is charged in every information period+Clearly, this issue was
not addressed in the models analyzed by Aviv and Federgruen, and Kapuscinski and
Tayur since they assumedwi ~ y!, for all i, were bounded from below+

To further explain the difference between this model and previous models, let us
consider the following three cases+ First, if the manufacturer only has inventory
holding cost but no penalty cost for all periods, then the optimal policy is not finite;
that is, the optimal policy does not have a finite order-up-to level because producing
nothing in all periods is clearly the optimal policy+ Second, if the manufacturer has
both inventory holding cost and penalty cost for all periods, then we have the models
studied by Aviv and Federgruen@1# and Kapuscinski and Tayur@16# + Finally, if in
some periods the manufacturer only has inventory holding cost, whereas in other
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periods she has both holding and penalty cost, then it is not clear whether there exists
an optimal policy with a finite order-up-to level+

Thus, the objective of this article is twofold: First, characterize the optimal
policy for the information sharing model under both discounted and average cost
criteria; second, quantify the benefits and identify the conditions under which in-
formation sharing is most beneficial for the manufacturer in an infinite time horizon;
that is, characterize how frequently information should be shared and when it should
be shared so that the manufacturer can maximize the potential benefits+

We show that a cyclic order-up-to policy is optimal under both discounted and
average cost criteria+Although the optimal policy has the same structure as those of
Aviv and Federgruen@1# and Kapuscinski and Tayur@16# , our analysis of the aver-
age cost criterion, which is based on the vanishing discount method~Heyman and
Sobel@14# !, is quite different from theirs+

One of the major difficulties in proving the average cost criterion is to charac-
terize the Markov chain induced by the optimal policy under the discounted cost
criterion+ To address this issue, we introduce a new method to construct and relate
Markov chains in a common state space+ Together with the Foster’s criterion and the
Lyapunov function, this method allows us to show that each of the Markov chains
induced by any finite cyclic order-up-to policy has a single irreducible positive
recurrent class and finite long-run average cost under certain nonrestrictive condi-
tions~Section 3!+ Then, in Section 4, we provide a simple proof for the cyclic order-
up-to policy to be optimal under the average cost criterion+ Finally, extensive
computational study is conducted in Section 5, using IPA~Infinitesimal Perturbation
Analysis!, to quantify the impacts of frequency and timing of information sharing,
with a particular focus on the differences between finite and infinite time horizons,
and nonstationary external demand+

3. PROPERTIES OF CYCLIC ORDER-UP-TO POLICY

In this section, we study the Markov processes associated with any cyclic order-
up-to policy and identify conditions under which they are positive recurrent and
have finite steady state average cost+The conditions are similar to those identified by
Aviv and Federgruen, and Kapuscinski and Tayur, but the analysis is quite different+

At this point, it is appropriate to remind the reader of the definition of a cyclic
order-up-to policy in a capacitated production system+ In such a system, every time
period the manufacturer produces up to the target inventory position if there is enough
production capacity, otherwise the manufacturer produces as much as the produc-
tion capacity allows+Of course, the target inventory position may vary periodically+

Consider the information sharing model with the cost functionr i ~x, y! ;
O~6x6r! 1 O~6y6r!, wherer is a positive integer+ Define a cyclic order-up-to policy
as a policy with different order-up-to levels for different information periods, but
these levels are the same for the same information period in different ordering pe-
riods; that is, the order-up-to level in information periodmN1 i is the same for all
m but may be different for differenti , i 5 1,2, + + + ,N+
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Let Di , i 51, + + + ,N, be the random variable representing demand in information
periodmN1 i for all m; demand is assumed to take discrete values+Consider a cyclic
order-up-to policy with levelsa1,a2, + + + ,aN , and define the shortfall processes
$smN1i ,m 5 0,1, + + + % for different i 5 1, + + + ,N assmN1i 5 ai 2 ymN1i if we are in
periodmN1 i andymN1i is the inventory position at the end of this period before
demand is realized+ Clearly, the shortfall may be negative+ When it is positive, it
represents the difference between what the manufacturer likes to produce and what
the production capacity allows the manufacturer to produce+When the target inven-
tory level, ai , is lower than the initial inventory position at the beginning of the
period, the shortfall is negative+ The dynamics of the shortfall is

smN1i11 5 5
~ai11 2 ai ! 1 smN1i 1 Di 2 C if ~ai11 2 ai ! 1 smN1i 1 Di . C

0 if 0 # ~ai11 2 ai ! 1 smN1i 1 Di # C

~ai11 2 ai ! 1 smN1i 1 Di if ~ai11 2 ai ! 1 smN1i 1 Di , 0+

(8)

If excessive stock is returned when the inventory position is higher than the order-
up-to level, then the dynamics of shortfall processes$smN1i

r ,m 5 0,1, + + + % for i 5
1, + + + ,N is smN1i11

r 5 ~ai11 2 ai 1 smN1i
r 1 Di 2 C!1+We refer to this policy as an

order-up-to policy with returns+
Proving that the shortfall process induced by a constant order-up-to policy has

a finite steady state average cost is known to be difficult~see, e+g+, the appendix of
Kapuscinski and Tayur@15# !+Proving that each of the shortfall processes induced by
a general cyclic order-up-to policy has finite steady state average cost and a single
irreducible positive recurrent class is even more difficult because of the more com-
plicated transition matrices+

The following methods have been applied in the literature to address these
issues+ Aviv and Federgruen showed that if~1! E~Di

l ! , ` for all positive integers
l # r 11 andi 51, + + + ,N and~2! E~(i51

N Di ! , NC, then for any finite order-up-to
policy, the shortfall process has a finite set of states such that it can be reached with
finite expected cost from any starting state+ Kapuscinski and Tayur’s method has the
following two steps: They first characterized the shortfall process under the order-
up-to zero policy+ Then, they related a cyclic order-up-to policy to an order-up-to
zero policy and proved that in steady state, E~6xi 6r! andE~6si 6r! are finite for a
cyclic order-up-to policy under similar conditions as those proved by Aviv and
Federgruen, namely~1! E~Di

2r12! , ` for i 5 1, + + + ,N and~2! E~(i51
N Di ! , NC+

In this section,we introduce a new approach to prove that$xmN1i ,m5 0,1, + + + %,
the inventory positions at the beginning ofmN1 i th information period, $ ymN1i ,m5
0,1, + + + % , the inventory position at the end of periodmN1 i but before demand is
realized, and$smN1i ,m5 0,1, + + + % , the shortfall in periodmN1 i , induced by any
finite cyclic order-up-to policy give rise to Markov chains with a single irreducible
and positive recurrent class and finite steady state average cost under the same con-
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dition as Aviv and Federgruen; that is, we require~1! E~Di
l ! , ` for all positive

integersl # r 1 1 andi 5 1, + + + ,N and~2! E~(i51
N Di ! , NC+

This is done as follows+ First, using the Foster’s criterion and the Lyapunov
function, we show that the Markov chain induced by an order-up-to constant policy
has the following properties: ~i! single irreducible and positive recurrent class and
~ii ! finite steady state average cost+ The same properties hold true for the Markov
chain induced by a cyclic order-up-to policy with returns+ Then, we relate Markov
chains induced by a cyclic order-up-to policy and a cyclic order-up-to policy with
returns in a common state space+This allows us to prove, under mild conditions, that
properties such as positive recurrence and finite steady state average cost hold true
for systems using a cyclic order-up-to policy if and only if they hold true for systems
using a similar policy with returns+

We begin our analysis by presenting new proofs for the positive recurrence and
finite steady state average cost of the order-up-to zero policy+ To simplify the analy-
sis, let us assume Pr~Di , 0! 5 0,∀ i +

Proposition 3.1: Given order-up-to zero policy, the inventory positions$xmN1i ,m5
0,1, + + + % and$ ymN1i ,m5 0,1, + + + % and the shortfall process$smN1i ,m5 0,1, + + + % for
i 5 1, + + + ,N generate discrete-time Markov chains (DTMC) with single irreducible
and positive recurrent class if(i51

N EDi , NC.

Proof: See the appendix for details+ n

The proof that the steady state average cost associated with an order-up-to zero
policy is finite is based on the following lemma+

Lemma 3.2: Consider an irreducible and aperiodic Markov chain$Xn, n5 0,1, + + + %
with a single period cost function r~{!. r ~{! is continuous and bounded from below.
Assume that there exists a Lyapunov function V~{! mapping the state space S to
@0,`! and a constanth such that

E$V~Xn11! 2 V~Xn!6Xn 5 x% # 2r ~x! 1 h, ∀x [ S+ (9)

Then, given an initial state x0 with V~x0! ,`, the Markov chain Xn has finite steady
state average cost if Xn is positive recurrent.

This lemma is a variation of the Foster’s second criterion by Meyn and Tweedie
@23; see Theorem 14+0+1 ~f-regularity!#; thus,we omit the proof and refer to Simchi-
Levi and Zhao@29# for technical details+ The lemma implies the following+

Lemma 3.3: Consider the order-up-to zero policy. If E~~Di !
k! , ` for all integers

0 # k # r 1 1, ∀ i and(i51
N EDi , NC, then in steady state, the following hold:

(i) E~6si 6r! , `, E~6xi 6r! , ` and E~6yi 6r! , ` for all i 5 1, + + + ,N.
(ii) For 0 , b , 1, E~(n50

` bn 6yn6r ! ,` and E~(n50
` bn 6xn6r ! ,` for any

initial inventory position x0 and initial information period i.

Proof: See the appendix for details+ n
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Proposition 3+1 and Lemma 3+3 can be extended to any finite cyclic order-up-to
policy with returns as follows+

Proposition 3.4: Consider any finite cyclic order-up-to policy with returns. If

(i51
N EDi , NC and E~~Di !

k! #` for any positive integer k# r 1 1 and ∀ i, then
the following hold:

(i) Each shortfall process$smN1i
r ,m 5 0,1, + + + %, i 5 1, + + + ,N, gives rise to a

Markov chain with single irreducible and positive recurrent class.
(ii) E ~6xi

r 6r ! , ` and E~6yi
r 6r ! , ` for all i.

(iii) For 0 , b , 1, E~(n50
` bn 6yn

r 6r ! ,` and E~(n50
` bn 6xn

r 6r ! ,` for any
initial finite inventory position x0

r and initial information period i.

Proof: Assumeai , i 5 1, + + + ,N, to be the order-up-to levels+ We only need to
transform this policy to an order-up-to zero policy and then apply Proposition 3+1
and Lemma 3+3+

ConsiderymN1i
r , the inventory positions at the end of periodmN 1 i before

demand is realized+ For simplicity, we drop the subscriptmN+ The system dynamics
is yi11

r 5 min$ yi
r 2 Di 1 C,ai11% 5 ai11 1 ~ yi

r 2 ai11 2 Di 1 C!2, wherex2 5
min$0, x% + Let zi

'5 yi
r 2 ai andDi

'5 Di 1 ~ai11 2 ai !; then, zi11
' 5 ~zi

'2 Di
'1 C!2

and(i51
N Di

'5 (i51
N Di , NC+ For zi

' andDi
' , this is order-up-to zero policy, where

demandDi
' can be negative but bounded from below+

Notice that the shortfall processes associated with this order-up-to zero policy
have state space$0,1,2, + + + % even if demand can be negative~due to return!+ Using
proofs similar to those of Proposition 3+1 and Lemma 3+3,we can show that the same
results hold for this order-up-to zero policy if there exists a positive constantdi so
that Pr$Di , 2di % 5 0, ∀ i 5 1,2, + + + ,N+ n

We now introduce a method to construct and relate Markov chains induced by
a cyclic order-up-to policy and a cyclic order-up-to policy with returns in a common
state space+ Consider two inventory systems: One uses a cyclic order-up-to policy
and the other uses a corresponding policy with returns+ The key idea of the method
is to characterize the gap between the inventory position processes without returns,
ymN1i , and with returns, ymN1i

r , assuming that both inventory systems start with the
same initial inventory level and face the same stream of demand+

Lemma 3.5: Consider two inventory systems with cyclic order-up-to levels a1, + + + ,aN,
for N $ 2: one system without returns and the second one with returns. If the
two systems start with the same initial state x0 # max$a1, + + + ,an% and face the
same stream of random demand, then the stochastic processes$zmN1i 5 ymN1i 2
ymN1i

r ,m5 0,1, + + + % have the following properties for all i:

(i) zmN1i $ 0 for all m.
(ii) zmN1i # max$a1, + + + ,aN % 2 min$a1, + + + ,aN % for all m.
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Proof: The proof is by induction+ Clearly, z1 5 0+ Consider periodmN1 i and
assume 0# zmN1i # max$a1, + + + ,aN % 2 min$a1, + + + ,aN % + We distinguish between
the following two cases+ In the first case, ai # ai11 and in the second case, ai . ai11+

ai # ai11: There are two subcases to consider+ ~1! xmN1i11 andxmN1i11
r are no

larger thanai11+ In this case, ymN1i11 5 min$xmN1i11 1 c,ai11% andymN1i11
r 5

min$xmN1i11
r 1 c,ai11% and, hence,

0 # ymN1i11 2 ymN1i11
r # xmN1i11 2 xmN1i11

r 5 ymN1i 2 ymN1i
r + (10)

~2! xmN1i11 . ai11 $ xmN1i11
r + This can only occur ifN . 2 and ai11 ,

max$a1, + + + ,aN % + Clearly, ymN1i11 5 xmN1i11 andymN1i11
r 5 min$xmN1i11

r 1
c,ai11% , which implies that

0 # ymN1i11 2 ymN1i11
r # xmN1i11 2 xmN1i11

r 5 ymN1i 2 ymN1i
r + (11)

ai . ai11: In this case there are three possible subcases: ~1! xmN1i11 andxmN1i11
r

are no larger thanai11; ~2! xmN1i11 . ai11 $ xmN1i11
r ; ~3! xmN1i11 andxmN1i11

r

are larger thanai11+ The proof of the first two subcases is identical to the proof
in the previous case+Consider subcase 3 and observe that in this caseymN1i115
xmN1i11 andymN1i11

r 5 ai11 and, hence,

0 # ymN1i11 2 ymN1i11
r 5 xmN1i11 2 ai11 # max$a1, + + + ,aN %

2 min$a1, + + + ,aN %+ (12)

n

Remark: If x0 . max$a1, + + + ,aN % , then the state space for$zmN1i ,m5 0,1, + + + % is
$0,1, + + + , x0 2 min$a1, + + + ,aN %% , ∀ i +

Theorem 3.6: Consider two arbitrary irreducible DTMCs$xn, n 5 0,1, + + + % and
$ yn, n 5 0,1, + + + % starting with the same initial state. If their difference process
$zn5xn2yn, n50,1, + + + % has finite state space Sz, then xn is positive recurrent if and
only if yn is positive recurrent. Also, xn has certain finite steady state moments if and
only if the same steady state moments of yn are finite.

Proof: First, we show thatxn is positive recurrence ifyn is positive recurrent+ De-
fine Sx andSy to be the state space for$xn, n 5 0,1, + + + % and$ yn, n 5 0,1, + + + % , re-
spectively+Assume thatyn is positive recurrent; using contradiction,we assumexn is
transient or nonrecurrent for all of its state+ Sinceyn 5 xn 2 zn andy0 5 x0, we have

Pr$ yn 5 i 6y0% 5 Pr$ yn 5 i 6x0%

5 (
k[Sz

Pr$xn 5 i 1 k, zn 5 k6x0%

5 (
k[Sz

Pr$zn 5 k6xn 5 i 1 k, x0%Pr$xn 5 i 1 k6x0%

# (
k[Sz

Pr$xn 5 i 1 k6x0%+ (13)
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SinceSz has only a finite number of states andxn is transient or nonrecurrent,
Pr$ yn 5 i 6y0% r 0 asn r ` for i [ Sy+ This contradicts the assumption thatyn is
positive recurrent~see Kulkarni@20, p+ 80, Theorem 3+4#, and Kemeny, Snell, and
Knapp@19, p+ 36, Prop+ 1-61#!+

Second, assume thatyn has finite steady state momentsE~6y6 l ! for 0 , l # r,
wherer is a positive integer+ Consider

(
i[Sx

6 i 6rPr$xn 5 i 6x0% 5 (
i[Sx

6 i 6r (
k[Sz

Pr$ yn 5 i 2 k, zn 5 k6x0%

5 (
i[Sx

6 i 6r (
k[Sz

Pr$zn 5 k6yn 5 i 2 k, y0%Pr$ yn 5 i 2 k6y0%

# (
k[Sz

(
i[Sx

6 i 2 k 1 k6rPr$ yn 5 i 2 k6y0%+ (14)

Taking the limitn r ` on both sides, we obtain

E~6x6r ! # 6Sz6~E~6y6r ! 1 c1 E~6y6r21! 1 + + + 1 cr! , `, (15)

wherec1, + + + ,cr are positive finite constants and6Sz6 is the size of the state space
for zn+

The necessary condition can be easily proved in a similar way+ n

Lemma 3+5 and Theorem 3+6 provide a method to simplify Markov chains with
infinite state space and complicated dynamics+ Finally, we have the following
corollary+

Corollary 3.7: Consider any finite cyclic order-up-to policys. If (i51
N EDi , NC

and E~~Di !
k! # ` for all i and positive integers k such that k# r 1 1, then the

following hold:

(i) Each shortfall process$smN1i ,m 5 0,1, + + + %, i 5 1, + + + ,N gives rise to a
Markov chain with single irreducible and positive recurrent class.

(ii) E ~6xi 6r! , ` and E~6yi 6r! , ` for all i.
(iii) For 0 , b , 1, E~(n50

` bn 6xn6r ! ,` and E~(n50
` bn 6yn6r ! ,` for any

finite initial inventory position x0 and initial information period i.
(iv) For 0 , b , 1, we have

Ui
b~x,s! 5 ES lim

Mr`
(
k5i

MN

bk2igk~xk,sk~xk!!6xi 5 xD , `+

(v)

lim
Mr`

EH(
k5i

MN

gk~xk, yk!6xi 5 xJ
MN 2 i 1 1

converges to a finite value independent of initial period i and initial state x.
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Proof: Parts~i!–~iv! are the direct results of Theorem 3+6, Lemma 3+5, and Prop-
osition 3+4; thus they do not need a proof+

To prove part~v!, notice that(i51
N E~ri ~x, y!! , ` in steady state is due to the

assumption thatri ~x, y!;O~6x6r!1O~6y6r!+Since the shortfall processes and thus
ymN1i andxmN1i11 give rise to Markov chains with single irreducible and positive
recurrent class, we let the steady state distribution for~x, y! in the i th information
period bep~x, y!

i , where~x, y! [ V i ~the feasible region of~x, y!!, thenE~ri ~x, y!! 5

(~x, y![V i p~x, y!
i r i ~x, y! must converge since the summation is over at most a count-

able number of positive values and it is bounded from above+ Finally, applying
Proposition 1-61~arithmetic average! of Kemeny et al+ @19# , the long-run average
cost converges and equals the steady state average cost+ n

4. A MARKOV DECISION PROCESS

Our objective in this section is to discuss the discounted and average cost criterion
and present finite optimal policies for the information sharing model+ For the dis-
counted cost criterion, we follow Aviv and Federgruen@1# and specify conditions
under which the cyclic order-up-to policy is optimal and the optimal order-up-to
levels are finite+Other methods can be found in Heyman and Sobel@14# , Federgruen
and Zipkin@8# , and Kapuscinski and Tayur@16# +

For the average cost criterion, Sennott@25# and Federgruen et al+ @6# introduced
conditions under which there exists an optimal policy for general Markov decision
processes~MDPs!+ Thus, one way to characterize the optimal policy is to verify that
these conditions hold in our case+ In fact,Aviv and Federgruen@1# and Kapuscinski
and Tayur@16# have applied this method in their analysis+

We apply a different approach based on the vanishing discount method+ For this
purpose, we observe that in our model, the optimal policy under the discounted cost
criterion can be characterized by a finite set of critical numbers~i+e+, order-up-to
levels!+ Thus, to prove the existence of an optimal policy under the average cost
criterion, we only need to specify conditions~see Theorem 4+3! for the optimal
order-up-to levels under the discounted cost criterion, instead of conditions on the
entire policy+

To specify these conditions, we apply a result from Aviv and Federgruen@1#;
namely that under certain conditions, the optimal order-up-to levels in the dis-
counted cost criterion are uniformly bounded for all 0, e # b , 1+We extend this
result to the information sharing model~see Proposition 4+2!, in which wi ~ y! is
unbounded from both above and below for somei + This result, together with the
results that long-run average cost is finite~Corollary 3+7!, implies that a cyclic order-
up-to policy is optimal under the average cost criterion~Theorem 4+3!+We start by
presenting conditions under which the optimal policy in the discounted cost case is
a finite cyclic order-up-to policy+

Following convention,we index periods in a reverse order starting at the end of
the planning horizon+ Letm50 be the last ordering period andm5M 21 be the first
ordering period+We seti 5 N for the first information period andi 51 for the last
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information period in any ordering period+ Thus, periodmN1 i represents thei th
information period in the~m21!st ordering period+Finally, letgmN1i ~x, y!5 ri ~x, y!
denote the single period expected cost in this information period+ We refer to this
indexing as backward index and we will only use backward index in this section+

Let UmN1i
b ~x! be the minimum expected total costs if there aremN1 i periods

remaining in the planning horizon, starting with an initial statex+ Let the salvage
costU0

b [ 0, and, hence,

UmN1i
b ~x! 5 Min

y[Ax

$gmN1i ~x, y! 1 bE~UmN1i21
b ~ y 2 Di !!%

5 Min
y[Ax

$ri ~x, y! 1 bE~UmN1i21
b ~ y 2 Di !!%, (16)

whereE~{! is the expectation with respect toDi +Observe thatri ~x, y! can be written
as the sum of a function ofx ~fi ~x!! and a function ofy ~wi ~ y!!, where

fi ~x! 5 H2cx, i 5 1

2~c 1 hi21!x otherwise
(17)

wi ~ y! 5 Hcy1 E~L~ y,D1!!, i 5 1

~c 1 hi21!y, otherwise+
(18)

Thus, the following recursion must hold:

UmN1i
b ~x! 5 fi ~x! 1 VmN1i

b ~x!,

VmN1i
b ~x! 5 Min

x#y#x1C
$JmN1i

b ~ y!%,

JmN1i
b ~ y! 5 wi ~ y! 1 bE~UmN1i21

b ~ y 2 Di !!+ (19)

Observe that in the very first information period~i+e+, information period
~M 2 1!N 1 N 5 MN! of the entire planning horizon, we have to addhN x1 to
UMN

b ~x! to account for the holding cost of initial inventory+
The dynamic programming model has the following properties:

1+ The cost functionri ~x, y! for each information periodi 51, + + + ,N is positive
and convex iny+ Thus, the following property, proved in Kapuscinski and
Tayur @16# , holds: UmN1i

b ~x! $ U~m21!N1i
b ~x! for any x, m 5 1, + + + ,M and

i 5 1, + + + ,N+
2+ ri ~x, y! 5 fi ~x! 1 wi ~ y! for all i , and there exists a positive integerr so that

fi ~x! ; O6x6r andwi ~ y! ; O6y6r + From Proposition 3+7, the total expected
discounted cost using cyclic order-up-to policy is finite if(i51

N EDi , NC
andE~~Di !

l ! , ` for any positive integerl # r 1 1, ∀ i + This implies that
UmN1i

b ~x! converges pointwise to a finite value for any finitex and for alli
~Heyman and Sobel@14, Thm+ 8-13# !+ Let Ui

b~x! denote the convergence
point of UmN1i

b ~x!+
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3+ JmN1i
b ~ y! is convex iny, for all mandi + Furthermore, lim 6y6r1` JmN1i ~ y! r

1` for all mandi if bN21p . c1 hN21+ The main difficulty in proving that
a cyclic order-up-to policy with finite target levels is optimal for this model
is that the functionwi ~ y! may be unbounded from both above and below+ To
overcome this difficulty, we need to aggregateN consecutive information
periods and identify conditions under which the cost function for all these
periods tends to positive infinity as the action variables approach either pos-
itive or negative infinity+ Following the analysis of Simchi-Levi and Zhao
@31# , a sufficient condition isbN21p . c1 hN21+ Intuitively, this condition
implies that the discounted penalty cost has to be larger than the sum of the
production cost and inventory holding cost for a single ordering period so
that the manufacturer should produce even in the first information period
given that the initial inventory position is sufficiently low+

Theorem 4.1: For the Markov decision process defined in Eq. (19), if

(a) (i51
N EDi , NC and E~~Di !

l ! , 1` for any positive integer l# r 11, ∀ i,
(b) bN21p . c 1 hN21,

then the following hold:

(1) Order-up-to policy is optimal for any m and i.
(2) Optimal order-up-to levels ymN1i

* are bounded as mr 1`.
(3) JmN1i ~ y! converges to Ji ~ y! for all y, i, and every limit of ymN1i

* is a minimal
point for Ji ~x!.

(4) Cyclic order-up-to policy is optimal under the discounted cost criterion.

Proof: SinceJmN1i
b ~ y! is a convex function ofyand lim6y6r1` JmN1i

b ~ y!r1` for
all m and i , the order-up-to policy is optimal for allm and i + SinceUmN1i

b ~x! is
bounded from above for anymand finitex, order-up-to levels are finite asmr 1`
because of~b! ~see the proof of Theorem 2 in Aviv and Federgruen@1# !+ Notice that
UmN1i

b ~x! is nondecreasing and converges toUi
b~x!,which impliesJmN1i

b ~ y! is non-
decreasing and converges to, say, Ji

b~ y!, due to the monotone convergence theorem+
Hence, part 3 is true~also see the proof of Theorem 2 in Aviv and Federgruen@1# !+
Finally, parts 1–3 imply that cyclic order-up-to policy is optimal under the dis-
counted cost criterion+ n

We now extend Theorem 3~b! of Aviv and Federgruen@1# to our model+

Proposition 4.2: For the Markov decision process defined by Eq. (1), if the
conditions of Theorem 4.1 are satisfied, then the optimal order-up-to levels yi

*, i 5
1,2, + + + ,N, under the discounted cost criterion are uniformly bounded both from
above and from below for any0 , e # b , 1.

Since the extension follows a similar proof technique to the one in Aviv and
Federgruen, we omit the proof and refer to Simchi-Levi and Zhao@29# for technical
details+We are ready to characterize the average cost criterion+
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Theorem 4.3: Consider the information sharing model and assume the following:

(a) Cyclic order-up-to policy is optimal under the discounted cost criterion.
(b) For all 0 , e # b , 1, the optimal order-up-to levels under the discounted

cost criterion are uniformly bounded both from above and from below.
(c) The long-run average cost of any finite cyclic order-up-to policy converges

to a finite value.

If these conditions are satisfied, then a cyclic order-up-to policy is optimal under the
average cost criterion.

Proof: Consider a sequence ofb1,b2, + + + ,bj , + + +F1 asj r `+ Since the optimal
order-up-to levels under the discounted cost criterion are uniformly bounded from
both above and below for all 0, e # b , 1, there must exist a finite cyclic order-
up-to policyf and a subsequencejnr` so thatf is the optimal policy for allUi

bjn~x!,
∀ i 5 1,2, + + + ,N+

Since we can show that for any finite cyclic order-up-to policys,

Gi ~x,s! 5 lim
Mr`

EH(
k5i

MN

gk~xk,sk~xk!!6xi 5 xJ
MN 2 i 1 1

converges to a finite value which is independent of the initial periodi and initial state
x ~see Corollary 3+7!; then, by Tauberian theory~Heyman and Sobel@14, p+ 172# !,

Gi ~x, f ! 5 lim
bjn

F1
~12 bjn!Ui

bjn~x!

# lim
bjF1

sup~~12 bj !Ui
bj ~x!!

# Gi ~x,d!, ∀d [ P; x, i+ (20)

The last inequality is justified by the Lemma A2 of Sennott@25# + n

Finally,we combine Theorem 4+3, 4+1,Corollary 3+7 and Proposition 4+2, to get

Corollary 4.4: In the information sharing model, if

(a) (i51
N EDi , NC and E~~Di !

l ! , 1` for any positive integer l# r 11,∀ i,
(b) bN21p . c 1 hN21,

then cyclic order-up-to policy is optimal under the average cost criterion.

5. COMPUTATIONAL RESULTS

In this section,we report on an extensive computational study conducted to develop
insights about the benefits of information sharing+ Our goal is to determine situa-
tions in which information sharing provides significant cost savings relative to sup-
ply chains with no information sharing in the infinite time horizon+ For this purpose,
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we first examine the impact of the production capacity and the frequency and timing
of information sharing on cost savings+ This is followed by a systematic comparison
between finite and infinite time horizons for i+i+d+ external demand+ Then, we study
the impact of independent but nonstationary demand on the benefits of information
sharing+ In the computational study,we focus on the average cost criterion and com-
pute the optimal order-up-to levels and cost by employing IPA~Fu @9# and Glasser-
man and Tayur@12# !+

In the model with no information sharing, we assume that the retailer only
places orders to the manufacturer at the end of each ordering period+ Since the de-
mand is backlogged and the retailer uses an order-up-to policy with constant order-
up-to level, the order placed by the retailer is equal to the total demand in one
ordering period+ Furthermore,we assume that the manufacturer knows the retailer’s
ordering policy and, therefore, the demand distribution of one ordering period+ Fi-
nally, we assume that the manufacturer has the same production capacity per infor-
mation period and charges the same inventory holding cost per item per information
period in the no-information-sharing model as in the information sharing model+

The model with no information sharing can be considered as a special case of
the information sharing model+ Indeed, consider an instance of the model with no
information and construct an information sharing model in which demand in every
information period within an ordering period is exactly zero except in the last infor-
mation period+ Demand in this information period equals the total demand during
that ordering period+ This information sharing model has the same dynamic pro-
gramming formulation as the model with no information sharing+Thus, the dynamic
program designed to solve the information sharing model can be applied to solve the
model in which information is not shared+ Finally, a finite cyclic order-up-to policy
is optimal for the model with no information sharing under both the discounted and
the average cost criterion+

In all of the numerical studies, we set the production costc 5 0 and focus on
holding and penalty costs+ The initial inventory position, x, at the beginning of the
first ordering period is set to be zero without loss of generality+

5.1. i.i.d. Demand

In this subsection, external demand is assumed to be i+i+d+ To identify situations in
which the manufacturer can achieve significant benefits from information sharing
and to compare the cost savings between finite and infinite time horizons, we ex-
amine the cases with variation of the following parameters: production capacity, the
number of information periods in one ordering period, and the time when informa-
tion is shared+

5.1.1. The effect of production capacity. To explore the impact of produc-
tion capacity on the benefit of information sharing in an infinite time horizon, we
illustrate in Figure 1 the percentage cost savings from information sharing relative to
no information sharing as a function of the production capacity+To compare with the
finite time horizon, we also show in Figure 1 the percentage cost savings from
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information sharing when the planning horizon includes only one ordering period
~Simchi-Levi and Zhao@28# !+

The demand distribution of one information period are Poisson~5! and Uni-
form~0,1, + + + ,9!, and there are four information periods in each ordering period+ The
inventory holding cost per ordering period is set to be a constant $4 per unit product
for all cases+ Thus, the inventory holding cost per information period is $1 per unit+
For each demand distribution and each capacity level, we consider the cases where
the ratio of penalty cost to holding costs in one ordering period is $4+75+

The computational study reveals that, as production capacity increases, the cost
saving percentage increases in both finite and infinite time horizons+ Indeed, it in-
creases from about 5% to about 35% as capacity over mean demand varies from 1+2
to 3+This is quite intuitive, since as production capacity increases, the optimal policy
would postpone production as much as possible and take advantage of all informa-
tion available prior to the time production starts+ Similarly, if the production capac-
ity is limited, then information is not very beneficial because the production quantity
is mainly determined by capacity, not realized demand+

We would like to point out that this result is valid only when production capacity
is finite+ Indeed, if production capacity is large enough~e+g+, infinite!, then the manu-
facturer’s optimal production policy is obviously to produce to order+ Thus, in this
case the manufacturer does not benefit from information sharing+Of course, in prac-
tice,many manufacturers have limited production capacity and thus they produce to
stock+ Hence, we limit our computational study to situations in which the ratio of
production capacity to mean demand in one ordering period is no more than 3+

Second, we observe that the differences of the percentage cost savings between
one ordering period and infinite time horizon is quite small, even if we use different
computational methods~i+e+, IPA for an infinite time horizon and dynamic program-

Figure 1. The impact of the production capacity, i+i+d+ demand+
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ming for the one ordering period case!+ Finally, similar to the finite horizon case
~Simchi-Levi and Zhao@28# !, our computational study reveals that information shar-
ing and no information sharing have almost identical fill rates+

5.1.2. The effect of the frequency and timing of information sharing. To
understand the impact of the frequency of information sharing in the infinite time
horizon case, in Figure 2 we display the percentage cost savings from information
sharing as a function of the number of information periods in one ordering period,
for both finite and infinite time horizon cases+ The number of information periods,
N, was two, four, six, and eight, whereas the length of the ordering period was
assumed to be constant in all cases+ The demand distribution during the entire or-
dering period is assumed to be Poisson with parameterl 5 24; hence, demand in a
single information period is Poisson with parameterl0N+ Similarly, the inventory
holding cost per ordering period is set up to be a constant $4 per unit product+ Thus,
the inventory holding cost per information period is 40N, whereN is the number of
information periods within one ordering period+ Total production capacity in the
entire ordering period is kept constant and is equally divided among the different
information periods+ Finally, the ratio of penalty to holding costs is set to be 4+75 in
all cases+

Figure 2 implies that as the number of information periods increases, the per-
centage savings increase+ However, the marginal benefit is a decreasing function of
the number of information periods+ Specifically, the additional benefit achieved by
increasing the number of information periods from four to eight is relatively small+
Finally, the difference between the cost savings obtained in finite and infinite time
horizons is relatively small+

Figure 2. The impact of the frequency of information sharing+
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To understand the impact of the time when information is shared and the opti-
mal timing of information sharing in infinite time horizon,we analyze the following
case in which the retailer only shares demand information once with the manufac-
turer in one ordering period+ In this case,we equally divide 1 ordering period into 10
intervals and compute the total cost for the manufacturer when the retailer shares
demand information with her at one of these intervals+

Figure 3 presents the total cost of the manufacturer as a function of time when
information is shared+ Figure 3 provides normalized cost as a function of normalized
time; that is, time is normalized and is measured from zero to one, while cost is
normalized byhN NED,whereED is the expected demand in one information period+
Thus, 0 in thex coordinate implies that information is shared at the beginning of an
ordering period, and 1 means that information is shared at the end of an ordering
period and hence cannot be used+Demand distribution is assumed to be Poisson~24!
and the ratio of penalty to holding costs is 4+

Figure 3 implies that the optimal timing for information sharing is in the second
half of the order interval+ This is true both in the finite and infinite horizon models+
Intuitively, when capacity is very large, it is appropriate to postpone the timing of
information sharing to the last production opportunity in this ordering period; inter-
estingly, this is also the right thing to do when capacity is tightly constrained~i+e+,
postpone the timing of information sharing until the last production opportunity!+
One possible explanation is that when capacity is very tight, the manufacturer needs
to build as much inventory as she can until the last production opportunity,when she
can review demand information and adjust production quantity+

Figure 3. The impact of the timing of information sharing for different levels of
production capacity, i+i+d+ demand+
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5.2. Nonstationary Demand

In this subsection,we study the impact of independent but nonstationary demand on
the benefits of information sharing in an infinite time horizon case+ For this purpose,
we first compare the percentage cost savings obtained in two systems: one facing
i+i+d+ demand and the other facing independent, nonstationary demand distributions+
Then, we examine how nonstationary demand affects the optimal timing of infor-
mation sharing+

To generate the nonstationary demand process, we modeled demand as a non-
homogenous Poisson process and considered the following two scenarios: piece-
wise increasing rate and piecewise decreasing demand rate+

In particular, demand follows Poisson~l~t !! distribution for t [ @0,T # + The
demand ratel~t ! is a piecewise constant simple function, and*0

T l~t ! dt5 L,where
L is the total average demand in one ordering period+ Assuming that there areN
information periods in one ordering period andl~t ! is a constant in every informa-
tion period, we can write it asl~n!, n 5 1, + + + ,N+

Definedl to be the difference between the highest demand rate and the lowest
demand rate in one ordering period and letDl5 @N0~N21!# dl+Then,we determine
the increasingl~n! as follows:

l~1! 5
L

N
2

Dl

2
1

Dl

2N
,

l~2! 5 l~1! 1
Dl

N
,

I

l~n 1 1! 5 l~n! 1
Dl

N
, n 5 2, + + + ,N 2 1+ (21)

The decreasingl~n! can be determined by reversing the index of informa-
tion periods+ It is easily seen thatl~n! satisfies the condition*0

T l~t ! dt 5 L+ To
create a comparable i+i+d+ demand distribution, we let the demand distribution be
Poisson~L0N! in every information period+

To study the impact of nonstationary demand on cost savings, we show in Fig-
ure 4 the percentage cost saving from information sharing as a function of produc-
tion capacity with increasing, decreasing, and i+i+d+ demand+ In all cases, N5 4 and
each ordering period is equally divided intoN information periods+ We choose
L 5 20, Dl 5 6, and the ratio of penalty to inventory holding cost in one ordering
period to be 4+75+

Figure 4 illustrates that nonstationary demand has a significant impact on the
benefit from information sharing+ The percentage cost saving is the smallest when
the demand rate is increasing, and it is the highest when the demand rate is decreas-
ing for all production capacity levels+ For instance, the difference between the per-
centage cost saving of increasing and decreasing demand rates is about 15% when
the ratio of capacity to mean demand is 2+
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This is quite intuitive because in the case of decreasing demand rate, realized
demand in the first few information periods, on average, accounts for a larger por-
tion of the total demand in one ordering period relative to increasing demand rate+
Indeed, an extreme example of increasing demand rate is that demand is exactly zero
in all information periods except the last one+ In the last information period, demand
equals the total demand in one ordering period+ As we show in Section 5, this ex-
ample is equivalent to a model with a no-information-sharing case+ Similarly, an
extreme example of the decreasing demand rate is that demand is exactly zero in all
information periods except for the first one+ In the first information period, demand
equals the total demand in one ordering period and, hence, information has a sig-
nificant impact on the manufacturer’s cost+

To study the impact of nonstationary demand on the optimal timing of informa-
tion sharing,we present in Figure 5 the manufacturer’s cost as a function of the time
when information is shared+The ratio of production capacity to mean demand in one
ordering period is 2+We use the same settings as in Section 5+1 except that we allow
for nonstationary demand distributions, whereL 5 30 andDl 5 4+

In Figure 6, we demonstrate the optimal timing of information sharing as a
function of the production capacity in the cases of increasing and decreasing demand
rates+

Figures 5 and 6 suggest the following observations:

• Information sharing is most beneficial in the case of decreasing demand rate
and it is least beneficial in the case of increasing demand rate+ Given that
demand information is shared only once in one ordering period, the percent-
age cost saving in the case of decreasing demand rate can be as much as 17%,
whereas it can only be as much as 11+3% in the case of increasing demand
rate+

Figure 4. The impact of production capacity, non-i+i+d+ demand+
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• Figures 5 and 6 show that demand information should always be shared ear-
lier in the case of decreasing demand rate relative to increasing demand rate
for different ratios of production capacity to mean demand+ For example,
when the ratio of capacity to mean demand equals 2~Fig+ 5!, it is optimal to
transfer demand information as early as 0+6 ~in a scaled time horizon! in the
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case of decreasing demand rate, whereas in the case of increasing demand
rate, the optimal timing of information sharing is as late as 0+8+

• This is quite intuitive because when demand rate is decreasing, most of the
demand faced by the retailer is realized close to the beginning of the ordering
period+On the other hand,when the demand rate is increasing,most demands
are realized close to the end of the ordering period+ Thus, it is better to share
information earlier and leave more time for production in the decreasing de-
mand rate case+

6. CONCLUSION

In this article, we analyze the value of information sharing in a two-stage supply
chain with a single manufacturer and a single retailer+ The manufacturer has finite
production capacity and she receives demand information from the retailer even
during periods of time in which the retailer does not make ordering decisions+ A
similar model is studied by Simchi-Levi and Zhao@28# in the finite time horizon
case; the current article extends the analysis to the infinite time horizon case+

For this purpose, we first show that for any finite cyclic order-up-to policy, the
associated inventory positions and shortfalls give rise to Markov chains with a sin-
gle irreducible, positive recurrent class and a finite steady state average cost+ The
proof is based on the Foster’s criterion and Lyapunov function, as well as a new
method to relate Markov chains+ This, together with the observation that the optimal
policy under the discounted cost criterion can be characterized by a finite set of
critical numbers, enables us to provide a simple proof for the optimality of cyclic
order-up-to policy under the average cost criterion+

Interestingly, this approach can be applied to prove the existence of an optimal
policy under the average cost criterion for other MDPs with unbounded costs+ For
this purpose, the optimal policy in these MDPs under the discounted cost criterion
must be characterized by a finite set of critical numbers—for instance, inventory
models with setup cost where the optimal policy under the discounted cost criterion
is an~s,S! policy+

Using an extensive computational study, we demonstrate the potential benefits
of information sharing on the manufacturer’s cost and service level+ In particular,we
observe that the percentage cost savings due to information sharing increases as
production capacity increases+ This is true in both finite and infinite time horizon
models+We also observe that nonstationary demand may have a substantial impact
on both the benefits from information sharing and the optimal timing of information
sharing+ For instance, if the demand rate is increasing, the benefit from information
sharing is not as high as that of decreasing demand rate+
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APPENDIX

Proof of Proposition 3.1

Let us first consider the shortfall process$smN1n,m5 0,1, + + + % for n 5 1, + + + ,N+We start our
proof by assuming i+i+d+ demandD with meanED+ Without loss of generality, we assume
initial statex0 # 0, since states larger than zero are transient+ Since

Pr$D 5 i %H $ 0, ∀ i $ 0

5 0 otherwise,

the shortfall process$st , n5 0,1, + + + % has state spaceS5 $0,1, + + + % and transition functionst 5
~st21 1 D 2 C!1+ Thus, the transition matrix is

P 5 3
Pr$D # C% Pr$D 5 C 1 1% Pr$D 5 C 1 2% J

Pr$D # C 2 1% Pr$D 5 C% Pr$D 5 C 1 1% J

Pr$D # C 2 2% Pr$D 5 C 2 1% Pr$D 5 C% J

I

Pr$D 5 0% Pr$D 5 1% Pr$D 5 2% J

0 Pr$D 5 0% Pr$D 5 1% J

I

4 + (A.1)

Let d~i ! 5 E~st11 2 st 6st 5 i ! 5 (j[S~ j 2 i !Pij + If i $ C,

d~i ! 5 (
j50

`

@~ j 1 i 2 C! 2 i # Pr$D 5 j %

5 (
j50

`

~ j 2 C!Pr$D 5 j %

5 ED 2 C+ (A.2)
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If i , C,

d~i ! 5 2i Pr$D # C 2 i % 1 (
j51

`

~ j 2 i !Pr$D 5 C 1 j 2 i %

5 ~C 2 i !Pr$D , C 2 i % 1 (
j50

`

~C 1 j 2 i !Pr$D 5 C 1 j 2 i % 2 C

# ~C 2 i !Pr$D , C 2 i % 1 ED 2 C

, `+ (A.3)

So from Pakes’ lemma~Kulkarni @20# !, the shortfall process of order-up-to zero policy with
i+i+d demand is positive recurrent ifED , C+

Assume that demands in different periods are independent of each other; the result can be
easily extended to systems with periodical demandD1,D2, + + + ,DN for any finiteN ~see Simchi-
Levi and Zhao@29# for technical details!+

The relationship betweenyt andst is st 5 2yt , and we also havext115 min$0, xt 1 C% 2
Dt + The proofs of positive recurrence forxt andyt are similar+

Proof of Lemma 3.3

To prove thefirst part of the lemma, it is sufficient to show the existence of a Lyapunov
functionV satisfying the requirement of Lemma 3+2+

We start by analyzingi.i.d. demand Dwith meanED+ Let V~x!5qr~x1C!r11 andqr 5
10~r 11!~C2 ED!+ Clearly, V~{! maps the state space of the shortfallS5 $0,1,2, + + + % to R1+

If i $ C,

E~V~sn11! 2 V~sn!6sn 5 i ! 5 qr (
j50

`

@~ j 1 i !r11 2 ~i 1 C!r11# Pr$D 5 j %

5 qr (
k50

r11Sr 1 1

k D~mk 2 Ck! i r112k, (A.4)

wheremk5(j50
` j kPr$D 5 j % is thekth moment of demand+ Further expanding the equation,

we obtain

E~V~sn11! 2 V~sn!6sn 5 i !

5 2i r 1 qrFSr 1 1

2 D~m2 2 C2! i r21 1 {{{ 1 ~mr11 2 Cr11!G + (A.5)

If i , C,

E~V~sn11! 2 V~sn!6sn 5 i !

5 qrF~Cr11 2 ~i 1 C!r11!Pr$D , C 2 i % 1 (
j5C2i

`

@~ j 1 i !r11 2 ~i 1 C!r11# Pr$D 5 j %G
5 qrFCr11 Pr$D , C 2 i % 1 (

j5C2i

`

~ j 1 i !r11Pr$D 5 j % 2 ~i 1 C!r11G
5 qrF (

j50

C2i21

@Cr11 2 ~ j 1 i !r11# Pr$D 5 j % 1 (
j50

`

@~ j 1 i !r11 2 ~i 1 C!r11# Pr$D 5 j %G+
(A.6)
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To summarize, in both cases,

E~V~sn11! 2 V~sn!6sn 5 i !

5 qr gr~C, i ! 2 i r 1 qrFSr 1 1

2 D~m2 2 C2! i r21 1 {{{ 1 ~mr11 2 Cr11!G , (A.7)

where

gr~C, i ! 5 5
0, i $ C

(
j50

C2i21

@Cr11 2 ~ j 1 i !r11# Pr$D 5 j %, 0 # i , C+
(A.8)

Define the single-period cost function as

rr~x! 5 xr 2 qrFSr 1 1

2 D~m2 2 C2!xr21 1 {{{ 1Sr 1 1

r D~mr 2 Cr !xG, (A.9)

and sincemk , 1` for all positive integerk # r 1 1, then from Lemma 3+2 and Proposi-
tion 3+1, steady-state average cost is finite for the shortfallsn with single-period cost function
rr~x!+

In fact, if the single period cost function isrl ~x!,∀0 , l , r, where

rl ~x! 5 xl 2 qlFSl 1 1

2 D~m2 2 C2!xl21 1 {{{ 1Sl 1 1

l D~ml 2 Cl !xG , (A.10)

the same analysis shows that the corresponding steady state average cost is finite for the
shortfallsn+

Finally, our objective is to show that if the single period cost function isxl , then the
steady state average cost of the shortfall is finite+ For this purpose, we use induction onl+ The
casel 5 1 is obvious since we already know that forr1~x! 5 x, the steady-state average cost
is finite+ By induction onl and the fact that steady-state average cost of the shortfall is finite
for rl ~x!, 0 , l , r, we obtain our result+

We can extend the result to independent demand with periodicallyvaryingdistributions
D1,D2, + + + ,DN in a similar way by definingV~x!5Qr~x1NC!r11 andQr 510~r11!~NC2

(n51
N EDn!+We omit the proof and refer the readers to Simchi-Levi and Zhao@29# for tech-

nical details+
We now prove thesecond partof the lemma+ Sincest is nonnegative, the monotone

convergence theorem implies that

ES(
t51

`

b t 6st 6nD 5 (
t51

`

b tE6st 6n+ (A.11)

Because of the first part of this lemma and 0, b , 1, this summation is for a power series
with positive and bounded coefficients, so it is finite+

Since the inventory position processesyt 5 2st andxt115 yt 2 Dt , it is easy to show that
the same arguments hold foryt andxt + n
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