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Abstract: We consider a simple two-stage supply chain with a single retailer facing i.i.d.
demand and a single manufacturer with finite production capacity. We analyze the value of
information sharing between the retailer and the manufacturer over a finite time horizon. In our
model, the manufacturer receives demand information from the retailer even during time periods
in which the retailer does not order. To analyze the impact of information sharing, we consider
the following three strategies: (1) the retailer does not share demand information with the
manufacturer; (2) the retailer does share demand information with the manufacturer and the
manufacturer uses the optimal policy to schedule production; (3) the retailer shares demand
information with the manufacturer and the manufacturer uses a greedy policy to schedule
production. These strategies allow us to study the impact of information sharing on the
manufacturer as a function of the production capacity, and the frequency and timing in which
demand information is shared. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 888–916,
2003.
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1. INTRODUCTION

Information technology is an important enabler of efficient supply chain strategies. Indeed,
much of the current interest in supply chain management is motivated by the possibilities
introduced by the abundance of data and the savings inherent in sophisticated analysis of these
data. For example, information technology has changed the way companies interact with
suppliers and customers. Strategic partnering, which relies heavily on information sharing, is
becoming ubiquitous in many industries.
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As observed by Stein and Sweat [9], sharing demand information vertically among supply
chain members has achieved huge success in practice. According to Stein and Sweat, by
“exchanging information, such as inventory level, forecasting data, and sales trends, these
companies are reducing their cycle times, fulfilling orders more quickly, cutting out millions of
dollars in excess inventory, and improving customer service.”

These developments have motivated the academic community to explore the benefits of
information sharing. An excellent review of recent research can be found in Cachon and Fisher
[2]. The paper by Aviv and Federgruen [1] is closely related to our work. In their paper, Aviv
and Federgruen analyze a single supplier multiple retailer system where retailers face random
demand and share inventories and sales data with the supplier. They analyze the effectiveness
of a Vendor Managed Inventory (VMI) program where sales and inventory data are used by the
supplier to determine the timing and the amount of shipments to the retailers. For this purpose,
they compare the performance of the VMI program with that of a traditional, decentralized
system, as well as a supply chain in which information is shared continuously, but decisions are
made individually, i.e., by the different parties. The objective in the three systems is to minimize
the long-run average cost. Aviv and Federgruen report that information sharing reduces system
wide cost by 0–5% while VMI reduces cost, relative to information sharing, by 0.4–9.5% and
on average by 4.7%. They also show that information sharing could be very beneficial for the
supplier.

Thus, the objective of the current paper is not only to characterize the benefit of information
sharing, but also to understand how to share information, e.g., how frequently should informa-
tion be shared and when should it be shared so that the supplier can realize the potential benefits.
Specifically, our focus, in this paper, is on the so called Quick Response strategy (see
Simchi-Levi, Kaminsky, and Simchi-Levi [8]), in which demand information is shared contin-
uously but decisions are made by individual parties.

Of course, our paper is not the first one to focus on the potential benefits of information
sharing for the supplier. For instance, Gavirneni, Kapuscinski, and Tayur [4] analyzes a simple
two-stage supply chain with a single capacitated supplier and a single retailer. In this periodic
review model, the retailer makes ordering decisions every period, using an (s, S) inventory
policy, and transfers demand information to the supplier every period, independent of whether
an order is made. Assuming zero transportation lead time, they show that the benefit, i.e., the
supplier’s cost savings, due to information sharing, increases with production capacity, and it
ranges from 1% to 35%.

In this paper, we investigate a single product, periodic review, two-stage production–
inventory system with a single capacitated manufacturer and a single retailer facing i.i.d.
demand and using an order-up-to inventory policy. The retailer has a fixed ordering interval.
That is, every T time periods, e.g., 4 weeks, the retailer places an order to raise her inventory
position to a certain level. The manufacturer receives demand information from the retailer
every � units of time, � � T. For instance, the retailer places an order every 4 weeks but
provides demand information every week. This is clearly the case in many retailer–manufacturer
partnerships in which orders are placed by the retailer at certain points in time but Point-of-Sale
(POS) data are provided every day or every week. In all these cases, POS data is provided to
the manufacturer more frequently than the retailers’ orders. We refer to the time between
successive orders as the ordering period and the time between successive information sharing
as the information period. Of course, in most supply chains, information can be shared almost
continuously, e.g., every second, while decisions are made less frequently, e.g., every week.
Thus, information periods really refer to the time intervals between successive use of the
information provided.
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Intuitively, if the retailer shares demand information more frequently than placing orders, the
manufacturer can better manage its production and inventory activities. Thus, the manufacturer
can reduce her safety stock while maintaining or increasing the service levels. To quantify this
intuition, our objective in this paper is to characterize the benefits of information sharing as well
as to identify methods that allow the manufacturer to efficiently use this information.

For this purpose, we analyze and compare the following three strategies. In the first strategy,
referred to as no information sharing, the retailer does not share information with the manu-
facturer except for order information. In the second strategy, referred to as information sharing
with optimal policy, the retailer shares demand information with the manufacturer at the end of
each information period. We assume that the manufacturer knows the external demand distri-
bution for each information period, and uses an optimal strategy to schedule production so as
to minimize her own expected holding and shortage cost. In the third strategy, referred to as
information sharing with greedy policy, the retailer shares demand information with the
manufacturer just as in the previous strategy, but instead of the optimal policy, the manufacturer
uses a simple heuristic that is easy to implement, based on demand and shortage in the previous
information period, as well as her production capacity.

The rest of this paper is organized as follows: In Section 2, we set up the models for the three
strategies, identify the policies used by the manufacturer, discuss their properties, and show the
value of information sharing. In Section 3, the optimal timing of information sharing is
discussed. In Section 4, we compare the performance of the three strategies using a numerical
study. Section 5 concludes the paper and points out the limitations of the paper.

2. MODELS

We consider a periodic review, single product, two-stage system with a single retailer and a
single manufacturer. External demand faced by the retailer every information (ordering) period
is an i.i.d. random variable. To simplify the analysis, we assume that the retailer controls her
inventory position (outstanding orders plus on-hand inventory minus backorders) by an order-
up-to policy with a constant order-up-to level; i.e., in every ordering period, the retailer orders
to raise her inventory position to the order-up-to level, and this level does not change over time.
All unsatisfied demand at the retailer is backlogged; thus the retailer transfers external demand
of each ordering period to the manufacturer. The manufacturer has a production capacity limit,
i.e., a limit on the amount that the manufacturer can produce per unit of time. The manufacturer
runs her production line always at the full capacity limit. Our objective is to compare the
performance of the three strategies in a finite time horizon.

The sequence of events in our model is as follows. At the beginning of an ordering period the
retailer reviews her inventory and places an order to raise the inventory position to the target
inventory level. The manufacturer receives the order from the retailer, fills the order as much as
she can from stock, and then makes a production decision. If the manufacturer cannot satisfy all
of a retailer’s order from stock, then the missing amount is backlogged. The backorder will not
be delivered to the retailer until the beginning of the next ordering period. Finally, transportation
lead-time between the manufacturer and the retailer is assumed to be zero. Similarly, at the
beginning of an information period, the retailer transfers the sales data of previous information
period to the manufacturer. Upon receiving this demand information, the manufacturer reduces
this demand from her inventory position, although she still holds the stock, and then makes a
production decision.

Throughout this paper, we equally divide each ordering period into an integer number of
information periods unless otherwise mentioned. Thus, N � T/� is an integer, and it represents
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the number of information periods in one ordering period. We index information periods within
one ordering period 1, 2, . . . , N where N is the first information period in the ordering period
and 1 is the last. Let C denote the production capacity per information period, �, while C� denotes
the production capacity per ordering period, T. Hence, C� � NC. Finally, c denotes the
production cost per item.

Since we calculate the inventory holding cost for each information period, we let h be the
inventory holding cost per unit product per information period. Let 0 � � � 1 be the time
discount factor for one information period; evidently, one unit of product kept in inventory for
n information periods, n � N, N � 1, . . . , 1, will incur a total inventory cost hn � h(1 �
� � . . . � �n�1). To keep the consistency of notation, let h0 � 0. It is easy to see that the
earlier the manufacturer makes a production run in one ordering period, the longer she will carry
the inventory, and thus the more holding cost she will have to pay. Penalty cost is charged at
the end of each ordering period and thus, let � be the penalty cost per backlogged item per
ordering period. We use D to denote the end user demand in one information period, �. D is
assumed to be i.i.d., with fD� (FD�) being the pdf (cdf) function and � being its mean.
Finally, ¥ D is the total end user demand in one ordering period, T.

2.1. No Information Sharing

Recall that in this strategy, the retailer does not share information with the manufacturer.
Since the retailer uses an order-up-to policy with a constant order-up-to level, and all unsatisfied
demands are fully backlogged, her order equals to the demand during one ordering periods.
Thus, we assume that the manufacturer knows the external demand distribution for one ordering
period.

Consider a finite horizon model with M ordering periods and N information periods in each
ordering period. Ordering periods are indexed in a reverse order, that is, 0 is the index of the last
ordering period in the planning horizon, while M � 1 is the index of the first ordering period.
The ith information period, i � 1, 2, . . . , N, in ordering period m, m � 0, 1, . . . , M � 1
is referred to as the mN � i information period.

Let U�mN�i(x) be the minimum expected inventory and production costs from period mN � i until
the end of the planning horizon, when we start period mN � i with an inventory position x.

It is easy to verify that W�mN�i( x, y), the expected inventory and production cost in the
information period mN � i, given that the period starts with an inventory position x and
produces in that period y � x, only depends on i. So we replace W�mN�i with W�i for the ith
information period, and write it as follows:

W�i�x, y� � � c�y � x� � hi�1�y � x�, i � 2, . . . , N,
c�y � x� � E�L�y, � D��, i � 1,

where L( y, ¥ D) � hN( y � ¥ D)� � �(¥ D � y)�, and E(L( y, ¥ D)) is the expectation
of L( y, ¥ D) with respect to ¥ D. In the very first information period, i.e., in information period
NM, a cost of hNx� will be charged for the initial inventory position.

Let the salvage cost U�0� � 0. If the initial inventory position is zero, then

U�mN�i�x� � � minx�y�x�C	W�i�x, y� � �U�mN�i�1�y�
, i � 2, . . . , N and 	 m,
minx�y�x�C	W�i�x, y� � �E�U�mN�i�1�y � �D��
, i � 1 and 	 m.
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To find the optimal policy, for m � 0, . . . , M � 1, we rewrite the dynamic program as
follows:

U�mN�i�x� � ��c � hi�1�x � V�mN�i�x�, 	 i,

V�mN�i�x� � minx�y�x�C	J�mN�i�y�
, 	 i,

J�mN�i�y� � � cy � hi�1y � �U�mN�i�1�y�, i � 2, . . . , N,
cy � E�L�y, � D�� � �E�U�mN�i�1�y � � D��, i � 1.

We now discuss properties of the above dynamic program. A straightforward analysis of the
finite planning horizon (see Federgruen and Zipkin [3]) shows the following two results:

LEMMA 1: The set A � {( x, y)�x � y � x � C} is convex. For all m � 0, . . . , M �
1 and i � 1, . . . , N we have:

(a) E(L(y, ¥ D)), J�mN�i(y), V�mN�i(x), and U�mN�i(x) are convex,
(b) U�mN�i(x) 3 ��, when �x� 3 ��, and
(c) if �N�1� � c � hN�1, then J�mN�i(y) 3 �� when �y� 3 ��.

See Appendix A for a proof.

LEMMA 2: Let y*mN�i be the smallest value minimizing J�mN�i, and let x be the inventory
position at the beginning of period mN � i. Then, y*mN�i is finite, and the optimal production-
inventory policy is to produce

� 0, x 
 y*mN�i,
y*mN�i � x, 0 � y*mN�i � x � C,
C, otherwise.

A third, quite intuitive property, is that, given two policies that produce the same amount in
a given ordering period, a cost-effective policy will postpone production as much as possible
during the ordering period. Of course, this property does not need any proof. We use dynamic
programming method to solve for y*m in single and multiple ordering period cases.

2.2. Information Sharing with Optimal Policy

In this strategy, the retailer provides the manufacturer with demand information every
information period, and the data are used by the manufacturer to optimize her production and
inventory costs. We consider the following two cases:

2.2.1. One Ordering Period

We start by considering a single ordering period with N information periods. We follow the
convention that N is the first information period and 1 is the last information period. Let In be
the manufacturer’s on-hand inventory level at the beginning of the nth information period. Dn

represents the demand during the nth information period. We use xn � In � ¥i�n�1
N Di. Thus,
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xn is the inventory position at the beginning of the nth information period. Let yn be the
inventory position at the end of nth information period after production in this period but not
taking Dn into account. That is, yn is equal to xn plus the amount produced in the nth time
period.

Let Un( xn) be the minimum total inventory and production costs from the beginning of nth
information period until the end of the planning horizon, given an initial inventory position xn.
To simplify the notation, we drop the index n from xn, yn, and Dn; this will cause no confusion.
Clearly,

U1�x� � minx�y�x�C	c�y � x� � E�L�y, D��
,

Un�x� � minx�y�x�C	c�y � x� � hn�1�y � x� � �E�Un�1�y � D��
, n � 2, . . . , N � 1,

UN�x� � minx�y�x�C	c�y � x� � hN�1�y � x� � �E�UN�1�y � D��
 � hNx�. (1)

L( y, D) � hN( y � D)� � �(D � y)� and E� is the expectation with respect to D, the
demand in one information period. Observe that the holding cost for y � x items produced in
the nth information period is hn�1( y � x), since these items are kept in inventory from the end
of period n until the end of period 1.

Rearranging the equations above, we obtain

U1�x� � �cx � V1�x�,

V1�x� � minx�y�x�C	J1�y�
,

J1�y� � cy � E�L�y, D��,

Un�x� � ��c � hn�1�x � Vn�x�,

Vn�x� � minx�y�x�C	Jn�y�
,

Jn�y� � cy � hn�1y � �E�Un�1�y � D��,

n � 2, . . . , N � 1,

UN�x� � ��c � hN�1�x � hNx� � VN�x�,

VN�x� � minx�y�x�C	JN�y�
,

JN�y� � cy � hN�1y � �E�UN�1�y � D��. (2)

2.2.2. Multiple Ordering Periods

Using the same notation as in the no information sharing model, it is easy to verify that Wi,
the expected inventory and production cost in the information period mN � i, given that the
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period starts with an inventory position x and produces in that period y � x, can be written as
follows:

Wi�x, y� � �i�x� � �i�y�, (3)

where

�i�x� � � �cx, i � 1,
��c � hi�1�x, otherwise.

�i�y� � � cy � E�L�y, D��, i � 1,
�c � hi�1�y, otherwise,

and

L�y, D� � hN�y � D�� � ��D � y��.

Thus, the following recursive relation must hold:

UmN�i�x� � minx�y�x�C	Wi�x, y� � �E�UmN�i�1�y � D��
,

which can be written as

UmN�i�x� � �i�x� � VmN�i�x�,

VmN�i�x� � minx�y�x�C	JmN�i�y�
,

JmN�i�y� � �i�y� � �E�UmN�i�1�y � D��. (4)

Of course, in the very first information period of the whole planning horizon, we have to add
hNx� to UMN( x) to account for the holding cost for initial inventory. This is identical to what
we did in the no information sharing model and the information sharing model with one ordering
period.

Similar properties to Lemmas 1 and 2 can be shown for this model. Specifically,

LEMMA 3: The set A � {( x, y)�x � y � x � C} is convex. For all m � 0, . . . , M �
1 and i � 1, . . . , N we have:

(a) E(L(y, D)), JmN�i(y), VmN�i(x), and UmN�i(x) are convex,
(b) UmN�i(x) 3 ��, when �x� 3 ��, and
(c) if �N�1� � c � hN�1, then JmN�i(y) 3 �� when �y� 3 ��.

See Appendix B for a proof.
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LEMMA 4: Let y*mN�i be the smallest value minimizing JmN�i, and let x be the inventory
position at the beginning of period mN � i. Then, y*mN�i is finite and the optimal production-
inventory policy is to produce

� 0, x 
 y*mN�i,
y*mN�i � x, 0 � y*mN�i � x � C,
C, otherwise.

The question is whether one can identify the relationship between the optimal order-up-to-
levels of two consecutive information periods. Intuitively, delaying production as long as
possible within one ordering period should reduce inventory holding cost. The risk, of course,
is that delaying too much may lead to a shortage, due to the limited production capacity. Thus,
the next property characterizes sufficient conditions under which postponing production is
profitable.

PROPOSITION 5: If Pr(D � C) � 0, then y*mN�i � y*mN�i�1, for i � 2, . . . , N, m �
0, 1, . . . , M � 1.

PROOF: We prove the result for the last ordering period, i.e., m � 0. For n � 2, . . . , N,
rewrite Eq. (2) as follows:

Jn�yn� � �1 � ��cyn � �hn�1 � �hn�2�yn � ��c � hn�2�E�D� � �Qn�yn�,

Qn�yn� � E�Vn�1�yn � D��

� E	minyn�D�yn�1�yn�D�CJn�1�yn�1��
.

Let y�n be the smallest value minimizing Qn( yn). Observe that y*n�1, the minimizer of Jn�1( y),
satisfies

Qn�y*n�1� � Jn�1�y*n�1�.

This is true since Pr(D � C) � 0 and D 
 0, which implies that y*n�1 is feasible, i.e.,

y*n�1 � D � y*n�1 � y*n�1 � D � C,

for all realization of D. Hence, y�n � y*n�1. Furthermore, we notice that the difference between
Jn( yn) and Qn( yn) is a linearly increasing function, so the first-order right-hand derivative of
Jn is positive at y*n�1 (the first-order right-hand derivative exists for Jn because Jn is convex).
Finally, since Jn is convex, the result follows. The proof for all the other ordering periods is
identical. �

In practice, of course, the assumption that Pr(D � C) � 0 may not always hold, and thus
the question is whether one can identify other situations where we can characterize the
relationship between y*n and y*n�1.

Observe that if Pr(D � C) � 0, then y�n 
 y*n�1, since Qn( yn) 
 Qn( y*n�1) for yn � y*n�1.
Thus, a result similar to Proposition 5 can not be proven in the same way.
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Because Jn( yn), n � 1, . . . , N are convex, they are continuous and right-hand differentia-
ble. Hence, define � � d/d y to be the right-hand derivative, the following equations hold:

�Jn�yn� � �1 � ��c � �hn�1 � �hn�2� � ��Qn�yn�

� �1 � ��c � �hn�1 � �hn�2� � � �
0

�yn�y*n�1��

�Jn�1�yn � D�fD�D� dD

�� �
�yn�y*n�1��

�

�Jn�1�yn � D�fD�D � C� dD.

Clearly, if �Jn( y*n�1) 
 0, then from the convexity and the limiting behavior of Jn, we have
y*n � y*n�1. Thus, plug in y*n�1:

�Jn�y*n�1� � �1 � ��c � �hn�1 � �hn�2� � � �
0

�

�Jn�1�y*n�1 � D�fD�D � C� dD.

Since �Jn�1( y*n�1 � D) � 0 for D 
 0, it is not clear whether �Jn( y*n�1) 
 0. We use
numerical methods to evaluate �Jn�1 in our computational study.

2.3. The Value of Information Sharing

In this subsection we quantify the benefits from information sharing in a model with M
ordering periods and N information periods in each ordering period. Our focus is on the extreme
case in which production capacity is infinite so that the manufacturer only needs to produce in
the last information period. Notice that the sequence of events in our model excludes a
make-to-order policy when production capacity is infinite. That is, in our model, the manufac-
turer will satisfy the order only from her on-hand stock. If the manufacturer does not have
enough stock on hand, she will pay a penalty cost for backlogging the missing amount.
Evidently, this is the limiting case of the information sharing model (Section 2.2) as the
production capacity approaches infinity.

First, let us consider the no information sharing strategy. The cost function for the last
ordering period is

B�1�x� � c�y � x� � L�y, � D1� � �cx � g�y, �D1�,

where x is the initial inventory position at the beginning of the ordering period, y is the target
inventory position, ¥ Dk is the total demand in the kth ordering period and

g�y, � D1� � cy � L�y, � D1�.

Let  � �N be the time discount factor for one ordering period. Since salvage cost is equal
to zero, the total cost in M ordering periods is
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B�M�xM� � hNxM
� � �

m�0

M�1

m�cxM�m � g�yM�m, �DM�m��,

given that the initial inventory position of the planning horizon is xM.
Since xm � ym�1 � ¥ Dm�1 for m � M � 1, . . . , 1, a straightforward calculation shows that

E�B�M�xM�� � hNxM
� � cxM

� E� �
m�0

M�2

m�g�yM�m, � DM�m� � cyM�m� � M�1g�y1, � D1� � �
m�0

M�1

mc � DM�m� ,

where E� is the expectation with respect to demand ¥ Dm, m � M, M � 1, . . . , 1.
In what follows, we omit hNxM

� by setting xM � 0 because it is the same for both the information
sharing model and the no information sharing model. Since our focus is on the impact of information
sharing on the inventory costs, we ignore production cost in our model. Hence,

E�B�M�xM�� � E� �
m�0

M�1

mL�yM�m, � DM�m�� ,

where ym 
 xm for m � M, M � 1, . . . , 1.
To simplify the model, we assume that demand has independent and identical increments.

Define Dt to be the demand in any time period of length t; thus DT � ¥ D and D� � D. To
simplify the notation, we let G( y, t) � E(L( y, Dt)). Following Heyman and Sobel [6], it can
be shown that if Prob{DT � 0} � 0, myopic policy is optimal for the manufacturer. Further,
let y*T be the optimal order-up-to level for the myopic policy; if the initial inventory position
xM � y*T, then U�MN( xM), the minimum expected inventory cost from the information period
MN to the end of the planning horizon satisfies

U�MN�xM� �
1 � M

1 � 
G�y*T, T�.

In order to obtain analytic result, we further assume that demand Dt can be approximated by
Normal(t�, t�2). Notice that in this case Prob{Dt � 0} � 0. One way to constrain the
probability of this happening is to choose � and � so that Prob{Dt � 0} � �, where � � 0
is a very small number.

Let �� be the standard normal cumulative distribution function, and �� be the standard
normal density function. Hence,

G�y, t� � hN �
��

y

�y � ��fDt
��� d� � � �

y

�

�� � y�fDt
��� d�

� ��t� � y� � �hN � �� �
��

y

�y � ��fDt
��� d�.

897Simchi-Levi and Zhao: Information Sharing in a Two-Stage Supply Chain



We denote � � �/(� � hN), and z� � ��1(�). From the analysis of the celebrated news
vendor problem, we know that G( y, t) reaches its minimum at y*t � t� � z�

�t �. Let � �
(� � t�)/�t �; hence,

G�y*t, t� � �t� � �hN � �� �
��

z�

�t� � �t ������� d�

� �hN � ���t ��,

where � � ����
z� ��(�) d�.

Next, consider the information sharing strategy. The cost function for one ordering period is

c�y � x � DT��� � L�y, D��,

where x is defined in the same way as in the no information sharing strategy, y is the target
inventory position of the last information period by taking DT�� into account, DT�� is the
realized demand in information periods N, N � 1, . . . , 2, and D� is the demand in the last
information period. That is, DT�� � D� is the demand realized in this ordering period. For
simplicity, let D� � DT�� and D � D�.

Assuming zero production cost and following the same procedure as in the no information
sharing model, we have

E�BM�xM�� � E� �
m�0

M�1

mL�yM�m, DM�m�� ,

with ym 
 xm � D�m for m � M, M � 1, . . . , 1.
Thus, if the initial inventory position xM � y*�, UMN( xM) � [(1 � M)/(1 � )]G( y*�, �).

These results lead to the following observations for the model with infinite production capacity:

● The information sharing strategy has the same fill rate as the no information sharing
strategy.

● The expected cost in the information sharing strategy is proportional to �� while
the expected cost under no information sharing is proportional to �T � �N�,
where N is the number of information periods in one ordering period. Thus, the
percentage cost saving due to information sharing (defined to be the ratio of cost
saving due to information sharing to the cost of no information sharing) is propor-
tional to 1 � �(1/N). For example, sharing information 4 times in one ordering
period allows the manufacturer to reduce total inventory cost by 50% relative to no
information sharing.

2.4. Analysis of Nondimensional Parameters

Our objective in this section is to identify the parameters which may have an impact on the
percentage cost reduction due to information sharing. For simplicity, we focus on a single
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ordering period, but a similar method can be applied to the problem with any number of ordering
period.

Divide both sides of Eq. (1) by hNN�, we obtain

U1�x�

hNN�
� min

�x/N����y/N����x/N����1/N��C/��
� c

hN

�y � x�

N�
�

1

hNN� � L�y, ��fD��� d��.

Let � � �/N�, D� � D/N�; it is easy to see that

fD��� �
d

d�
FD��� �

d

d�
Pr	 D

N�
�

�

N�
 �
d

d�
FD�	 �

N�
 �
1

N�
fD����.

Hence,

1

hNN� � L�y, ��fD��� d� � � 		 y

N�
� �
�

�
�

hN
	� �

y

N�

�
 fD���� d�.

Let x� � x/N�, y� � y/N�, c� � c/hN, � � �/C, �� � �/hN, U�1 � U1/hNN�, and L�( y�,
�) � ( y� � �)� � ��(� � y�)�. We omit � from the notation without causing any confusion,
and we can rewrite the nondimensionalized function U1 as follows:

U1�x� � min
x�y�x��1/N��1/��

	c�y � x� � � L�y, ��fD��� d�
.

A similar technique can be applied to Un( x) for n � 2, . . . , N. Hence,

Un�x� � minx�y�x��1/N��1/���c�y � x� �
hn�1

hN
�y � x� � �E�Un�1�y � D���,

n � N � 1, . . . , 2,

UN�x� � minx�y�x��1/N��1/���c�y � x� �
hN�1

hN
�y � x� � �E�UN�1�y � D��� � x�.

Thus, the percentage cost reduction associated with information sharing relative to no infor-
mation sharing depends only on the following nondimensional parameters: �, N, �, c, �, and
fD(�), where � is the capacity utilization �/C, N is the frequency of information sharing, � and
c are the nondimensionalized penalty and production costs, and fD(�) is the probability density
function of the nondimensionalized demand. In our computational study, we will focus on the
impact of these parameters on the benefit from information sharing.
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2.5. Information Sharing and the Greedy Policy

In this strategy, we apply a simple heuristic that specifies production quantities so as to match
supply and demand. This heuristic is motivated by our experience with a number of manufac-
turing companies who use the shared information in a greedy fashion. That is, these companies
use a “lot-by-lot” strategy; i.e., they continuously update production quantities to match realized
demand. Thus, our objective is to quantify the impact of the greedy heuristic on the manufac-
turer’s cost and service level.

Specifically, in this heuristic the manufacturer produces in every information period, n �
N � 1, N � 2, . . . , 2, an amount equal to

min	C, Dn�1 � xn
�
,

where xn
� � min{0, xn} is the shortage level at the beginning of the nth information period.

In the first information period, i.e., n � N, the manufacturer produces

min	C, �xN
�
.

Finally, in the last information period, i.e., n � 1, the inventory is raised to a certain level
determined by production capacity, inventory at the beginning of the information period,
production and inventory holding costs, and the demand distribution. This can be done by
solving a newsboy problem with capacity constraint; the reader is referred to Hadley and Whitin
[5] or Lee and Nahmias [7] for a review of the newsboy problem.

3. TIMING OF INFORMATION SHARING

In this section, we fix the frequency of information sharing, i.e., N is fixed, but allow the times
at which information is shared to change. Thus, an important question is when to share
information. To simplify the analysis, we focus on the single ordering period model and assume
that the retailer can share information with the manufacturer only once during the ordering
period. Intuitively, the higher the production capacity per unit time, the later the time informa-
tion may be shared. Of course, the later the timing of information sharing, the more accurate the
information on demand during the ordering period but the smaller the remaining production
capacity, i.e., the product of the per unit time production capacity and the remaining time until
the end of the ordering period. For instance, if production capacity per unit of time is very high,
information should be transferred and used almost at the end of the ordering period. On the other
hand, if production capacity is tight, then it is less clear when information should be shared.
Thus, our objective is to find (1) the optimal time to share information, and (2) the parameters
which may affect the best timing for sharing information.

In order to find the optimal timing, we develop a continuous time model. For this purpose, all
notations associated with an information period will be changed to per unit of time, while the
others remain the same. Hence, h is the inventory holding cost per unit product per unit of time;
C is the production capacity per unit of time; and D is the customer demand per unit of time with
mean �. Finally, to simplify the analysis, we set � � 1. Similar to the discrete time model,
production is delayed as long as possible until the time that the target inventory position can just
be reached by producing at the rate C.

Consider an ordering interval [0, T] and a given t � T, let T � t be the time when
information is shared. t � 0 (t � T) implies that information is shared at the end (beginning)

900 Naval Research Logistics, Vol. 50 (2003)



of the ordering period. We assume that customer demand D� in any time interval of length � is
Poisson(��). This implies that customer demand at any time interval [t, t � �] � [0, T] of
length � depends only on � but not on t, and demand in different (not overlapping) time intervals
is independent. The dynamic program is formulated as below. Given that information is shared
after T � t units of time, let U1( x, t) (U2( x, t)) be the minimum expected inventory and
production costs from the time information is shared (the time the ordering period starts,
respectively) to the end of the horizon given an initial inventory position x:

U2�x, t� � minx�y�x��T�t�C	c�y � x� � H2�x, y, t� � E�U1�y � DT�t, t��
,

U1�x, t� � minx�y�x�tC	c�y � x� � H1�x, y� � E�L�y, Dt��
, (6)

where

H2�x, y, t� � T � h � x� � h � t � �y � x� �
h

2

�y � x�2

C
,

H1�x, y� �
h

2

�y � x�2

C
,

L�y, D� � T � h � �y � D�� � � � �D � y��.

To show that we correctly calculate the total inventory holding cost, let us assume that x1 is the
initial inventory position at the beginning of the ordering period, y1 is the order-up-to level at
the end of the first information period, x2 � y1 � DT�t is the inventory position at the
beginning of the second information period, and y2 is the order-up-to level at the end of the
second information period. With these notations, the total inventory holding cost during the
ordering period equals to

h � T � x1
� � h � t � �y1 � x1� �

h

2

�y1 � x1�
2

C
�

h

2

�y2 � x2�
2

C
.

Notice that the term

h � T � x1
� � h � t � �y1 � x1� �

h

2

�y1 � x1�
2

C

is a function of x1, y1, and t only and hence it is captured by H2( x, y, t). The term

h

2

�y2 � x2�
2

C

is a function of x2 and y2 only and hence is captured by H1( x, y).
If t is fixed, it is easy to show that V1( x, y, t) � c( y � x) � H1( x, y) � E(L( y, Dt)) and

V2( x, y, t) � c( y � x) � H2( x, y, t) � E(U1( y � DT�t, t)) are jointly convex in both x
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and y [since the Hessians of H1( x, y), H2( x, y, t) are positive semidefinite]. This observation
implies:

PROPOSITION 6: U1( x, t) and U2( x, t) are convex in x.

PROOF: We start by proving that U1( x, t) is convex in x. Suppose we have x1, x2, x1 � x2,
and y*1, y*2, where U1( x1, t) � V1( x1, y*1, t) with x1 � y*1 � x1 � tC and U1( x2, t) � V1( x2,
y*2, t) with x2 � y*2 � x2 � tC. Let x� � �x1 � (1 � �) x2 and y� � �y*1 � (1 � �) y*2,
obviously, for any � � (0, 1), x� � y� � x� � tC. Hence,

U1�x� , t� � min	V1�x�, y, t��x� � y � x� � tC


� V1�x� , y� , t�

� �V1�x1, y*1, t� � �1 � ��V1�x2, y*2, t�

� �U1�x1, t� � �1 � ��U1�x2, t�.

To prove that U2( x, t) is convex in x, observe that since U1( x, t) is convex in x, thus

V2�x, y, t� � c�y � x� � H2�x, y, t� � E�U1�y � DT�t, t��

is jointly convex in x and y. Applying the same proof as before, we can show that U2( x, t) is
convex in x. �

Unfortunately, it is not clear whether or not E(U1( y � DT�t, t)) and U2( x, t) are convex
in t. Thus, for any given t, we compute the optimal y by utilizing Proposition 6. To find the
optimal timing of information sharing, we discretize the ordering period and search on all
possible values of t.

To characterize the optimal timings of information sharing when the retailer can transfer
demand information to the manufacturer more than once, we extend our analysis to the case in
which the retailer can share information with the manufacturer twice during one ordering period.
Consider an ordering period [0, T]; let 0 � t1 � t2 � T be the times when information is
shared, U1( x, t2) (U2( x, t1, t2), U3( x, t1, t2)) be the minimum expected production and
inventory cost from the time of the second information sharing (the time of the first information
sharing, the time the ordering period starts, respectively) to the end of the ordering period given
an initial inventory position x. Then the following dynamic program holds:

U3�x, t1, t2� � minx�y�x�t1C	c�y � x� � K3�x, y, t1� � E�U2�y � Dt1, t1, t2��
,

U2�x, t1, t2� � minx�y�x��t2�t1�C	c�y � x� � K2�x, y, t2� � E�U1�y � Dt2�t1, t2��
,

U1�x, t2� � minx�y�x��T�t2�C	c�y � x� � K1�x, y� � E�L�y, DT�t2��
,

where
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K3�x, y, t1� � T � h � x� �
h

2

�y � x�2

C
� �T � t1� � h � �y � x�,

K2�x, y, t2� �
h

2

�y � x�2

C
� �T � t2� � h � �y � x�,

and

K1�x, y� �
h

2

�y � x�2

C
.

Following the same procedure as in Proposition 6, we can show that U3( x, t1, t2), U2( x, t1,
t2), and U1( x, t2) are convex in x. Since it is not clear whether U3( x, t1, t2) is convex in t1

and t2, we compute the optimal timing t1 and t2 by discretizing the ordering period and
searching on all possible values of t1 and t2.

Finally, we identify the nondimensional parameters which may have impacts on the optimal
timing(s). We start with the case in which information is shared only once in one ordering
period. We divide Eq. (6) by hT2�; let x� � x/T�, y� � y/T�, t� � t/T, c� � c/Th, � �
�/C, �� � �/Th, U�1 � U1/hT2�, U�2 � U2/hT2�, H�1 � H1/hT2�, H�2 � H2/hT2�, D�
� D/T�, and L�( y�, �) � ( y� � �)� � ��(� � y�)�. We omit � from the notation without
creating any confusion, and rewrite the nondimensionalized functions U1( x, t) and U2( x, t) as
follows:

U2�x, t� � minx�y�x��1�t�/��	c�y � x� � H2�x, y, t� � E�U1�y � D1�t, t��
,

U1�x, t� � minx�y�x��t/��	c�y � x� � H1�x, y� � E�L�y, Dt��
,

where H2( x, y, t) � x� � t( y � x) � (�/ 2)( y � x)2, H1( x, y) � (�/ 2)( y � x)2, and L( y,
D) � ( y � D)� � �(D � y)�. This analysis shows that the nondimensional optimal timing
is a function of �, �, c, and fD� only, of which we will study the effects of � and � in the
following section.

In the case when information can be shared twice in one ordering period, a similar nondi-
mensional analysis shows that the nondimensional optimal timings t1/T, t2/T only depend on �,
�, c, and fD�.

4. COMPUTATIONAL RESULTS

In this section, we use computational analysis to develop insights on the benefits of infor-
mation sharing. Our goal is twofold: (1) Determine situations in which information sharing
provides significant cost savings compared to supply chains with no information sharing; (2)
identify the benefits of using information optimally compared to using information greedily. Our
focus is on the manufacturer’s cost and service level.

According to Section 2.4, we examined cases with variations on the following nondimen-
sional parameters: production capacity over mean demand, the number of information periods
in one ordering period, the time when information is shared, demand distribution, and finally the
ratio between penalty cost and inventory holding cost.
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We set production cost equal to zero, and focus on holding and penalty costs. Let inventory
holding cost per ordering period to be equal to a constant 0.4 $ per unit product for all cases.
Thus, the inventory holding cost per information period is 0.4/N, where N is the number of
information periods within one ordering period. Penalty cost varies from 1.9 to 7.9 $ per unit
product per ordering period and takes the following values 1.9, 3.4, 4.9, 6.4, 7.9. In all cases of
our computational analysis, the time discount factor � is assumed to be 1.

Let the initial inventory position at the beginning of the first ordering period, x, be equal to
zero. To simplify the calculation, we use discrete probability distributions for customer demand
in one information period. In our study, we consider discrete distributions such as Poisson,
Uniform, and Binomial. In addition, we also analyze the following discrete distributions: the
first, referred to as Disc1, demand takes values from the set (0, 1, 3, 6) with probability (0.1, 0.3,
0.5, 0.1), respectively. The second, referred to as Disc2, demand takes the same values with
probability (0.05, 0.2, 0.7, 0.05), respectively.

The dynamic program algorithms such as value iteration allows us to find the cost associated
with the first two strategies. For the third strategy, the newsboy model allows us to find the
optimal order-up-to level in the last information period of every ordering period, while the cost
associated with the strategy is estimated through simulation. Finally simulation results provide
us with service levels for all three strategies. Following convention, we measure service level
by the type one fill rate, which is defined to be the fraction of ordering periods in which no
backorders occur.

In the simulation models, each system is simulated 40,000 times. The fill rate is calculated as
follows: Let Xi be a random variable taking the value one if demand (at the end of the ordering
period) is satisfied with no shortage in the ith run, and zero otherwise. Our estimation of the type
one fill rate is the sample mean X� � ¥i Xi/n, where n is 40,000. Since our estimation of the
standard deviation of Xi is equal to �X� (1 � X� ), which is less than 0.5, thus, the length of a
95% confidence interval of the fill rate is no more than 0.0098.

The following discussions are based on our computational results for models with one
ordering period and four information periods unless otherwise mentioned. For multiordering
period planning horizon, similar results are obtained.

4.1. The Effect of Information Sharing on the Optimal Policy

In this subsection we analyze the impact of production capacity, penalty cost and demand
variability on the optimal policy when information is shared.

Table 1 presents the effect of production capacity for three different distributions of demand
in one information period. For each demand distribution, we increase the ratio of production
capacity to mean demand (the column capacity/mean demand) and calculate the order-up-to-
levels in all information periods. Thus, the last column represents the order-up-to-level for each
of the four information periods.

Observe that

● Proposition 2.5 holds for almost all cases except the one in which production
capacity is very tight, e.g., capacity/mean demand � 1.2.

● As capacity increases, the difference between order-up-to levels in different infor-
mation periods increases. The intuition is clear: as capacity increases, the optimal
policy delays production as much as possible.

● The order-up-to-levels in the first few information periods may be negative, which
implies that the inventory position can be negative.
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Table 2 demonstrates the impact of penalty cost. In this table, we increase the ratio of penalty
to holding costs from 4.75 to 19.75 for each demand distribution. The table demonstrates the
following insights:

● As penalty cost increases, the order-up-to-levels increase.
● As penalty cost increases, the differences between consecutive order-up-to levels

decreases.

Table 3 presents the impact of demand variability. In this case the capacity over average
demand was kept constant, at a level of 1.67 for all cases, and penalty over holding cost was 7.9
for all cases. It is easy to see that the coefficient of variation of demand distribution has a similar
impact as the penalty cost. That is:

● As the coefficient of variation increases, the order-up-to-levels increase.
● As the coefficient of variation increases, the differences between consecutive

order-up-to levels decrease.

In Table 4 we consider two ordering periods with four information periods in each one. We
observe that the difference between the order-up-to-levels of the same information periods in
different ordering periods is small relative to the average total demand in one ordering period.
For example, in the case of the Binomial demand distribution, the maximum difference is 2
while the average total demand in one ordering period is 20.

Table 1. The impact of production capacity.

Demand Distribution Capacity/Mean Demand Penalty/Holding Costs Order-up-to-Levels

Poisson(5) 1.2 8.5 (8, 9, 9, 8)
Poisson(5) 1.6 8.5 (2, 5, 7, 8)
Poisson(5) 2 8.5 (�4, 1, 5, 8)
Uniform(0, 1, . . . , 9) 1.22 8.5 (10, 10, 10, 8)
Uniform(0, 1, . . . , 9) 1.67 8.5 (4, 6, 8, 8)
Uniform(0, 1, . . . , 9) 2.11 8.5 (�2, 2, 6, 8)
Binomial(0.5, 10) 1.2 8.5 (6, 7, 7, 7)
Binomial(0.5, 10) 1.6 8.5 (0, 3, 5, 7)
Binomial(0.5, 10) 2 8.5 (�6, �1, 3, 7)

Table 2. The impact of penalty cost.

Demand Distribution Capacity/Mean Demand Penalty/Holding Costs Order-up-to-Levels

Poisson(5) 1.6 4.75 (0, 3, 6, 7)
Poisson(5) 1.6 12.25 (3, 6, 8, 8)
Poisson(5) 1.6 19.75 (5, 7, 9, 9)
Uniform(0, 1, . . . , 9) 1.67 4.75 (1, 4, 7, 8)
Uniform(0, 1, . . . , 9) 1.67 12.25 (5, 7, 9, 9)
Uniform(0, 1, . . . , 9) 1.67 19.75 (7, 8, 9, 9)
Binomial(0.5, 10) 1.6 4.75 (�1, 2, 5, 6)
Binomial(0.5, 10) 1.6 12.25 (1, 4, 6, 7)
Binomial(0.5, 10) 1.6 19.75 (2, 4, 6, 8)
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4.2. The Effect of Production Capacity

To explore the benefit of information sharing as a function of the production capacity, we
illustrate in Figure 1 the percentage cost savings from information sharing with the optimal
policy relative to no information sharing for five demand distributions.

For each demand distribution and each capacity level, we set the ratio of the penalty cost to
holding cost to 4.75. Similar results can be obtained at other values of penalty over holding cost,
and we will discuss the impact of penalty cost in Section 4.3.

Our computational study reveals that as production capacity increases, percentage cost
savings increase. Indeed, percentage cost savings increase from about 10% to about 35% as
capacity over mean demand increases from 1.2 to 3. This is quite intuitive, since as production
capacity increases, the optimal policy would postpone production as much as possible and take
advantage of all information available prior to the time production starts. For instance, in case
of infinite capacity, it is optimal to wait until the last information period and produce to satisfy
all demand realized so far plus an additional amount based on solving a newsboy problem (see
Section 2.3). Similarly, if the production capacity is limited, then information is not very
beneficial since the production quantity is mainly determined by capacity, not the realized
demand.

Finally, from the fill-rate point of views, our computational study reveals that information
sharing with the optimal policy and the no information sharing strategies have almost identical
fill rates.

To explore the effectiveness of information sharing with the greedy policy, we provide in
Figure 2 the percentage cost savings of information sharing with the optimal policy relative to
information sharing with the greedy policy under similar conditions as above. The figure
illustrates the following insights:

● Information sharing with the optimal policy reduces cost by at least 15% relative to
information sharing with the greedy policy and the savings can be as much as
50–60%.

● When the production capacity is tightly constrained, the savings provided by

Table 3. The impact of demand variability.

Demand Distribution
Coefficient of

Variations Order-up-to-Levels

Uniform(3, 4, 5, 6) 0.25 (�3, 1, 4, 6)
Uniform(2, 3, . . . , 7) 0.38 (�1, 2, 5, 7)
Uniform(1, 2, . . . , 8) 0.51 (3, 5, 7, 8)
Uniform(0, 1, . . . , 9) 0.64 (7, 8, 9, 9)

Table 4. Two ordering periods.

Demand Distribution Capacity/Mean Demand Penalty/Holding Costs Order-up-to-Levels

Poisson(5) 1.6 4.75 (0, 3, 6, 7, 0, 3, 6, 8)
Poisson(5) 2 4.75 (�6, 1, 4, 7, �6, 1, 4, 8)
Uniform(0, 1, . . . , 9) 1.67 4.75 (1, 4, 7, 8, 1, 4, 7, 8)
Uniform(0, 1, . . . , 9) 2.11 4.75 (�5, 0, 5, 8, �5, 0, 5, 9)
Binomial(0.5, 10) 1.6 4.75 (�1, 2, 5, 6, �1, 2, 5, 8)
Binomial(0.5, 10) 2 4.75 (�7, �2, 3, 6, �8, �2, 3, 7)
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information sharing with the optimal policy is relatively high. This is because the
greedy policy does not build safety stock until the last information period. In the last
information period, if capacity is very tight, the greedy policy may not be able to
build as much safety stock as needed, thus resulting in heavy penalty cost. On the
other hand, the optimal policy can start building safety stock from the beginning of
the ordering period by taking advantage of excessive capacity in all information
periods.

● As capacity increases, the benefit from information sharing with the optimal policy
relative to information sharing with the greedy policy decreases first and then

Figure 1. The impact of production capacity.

Figure 2. The benefits of using information optimally.
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increases again. This is true, since as capacity becomes very large relative to
average demand, information sharing with the optimal policy will postpone pro-
duction as much as possible, while information sharing with the greedy policy will
build inventory starting from the beginning of ordering periods, thus resulting in
heavy inventory holding cost.

Figure 3 shows the difference between type-one fill rates for information sharing with the
optimal policy and information sharing with the greedy policy as a function of the production
capacity for various demand distributions. The figure demonstrates that when capacity is
relatively tight, the difference in the fill-rates is substantial. However, as capacity increases, the
two strategies have almost identical fill-rates.

4.3. The Effect of Penalty Cost

To study the impact of penalty cost on the benefit of information sharing, we present in Figure
4 the percentage cost savings with information sharing relative to no information sharing as a
function of the ratio of penalty cost to inventory holding cost at various capacity levels.

Demand distribution in one information period is assumed to be Uniform(0, 1, . . . , 9). As
Gavirneni, Kapuscinski, and Tayur [4] points out, information sharing has limited value when
the ratio is either very high or very low. For moderate ratios, Figure 4 illustrates that the
percentage cost saving depends strongly on production capacity. Specifically, when capacity is
tightly constrained (e.g., capacity/mean demand � 1.2), the percentage cost saving reaches its
peak value at a smaller penalty/holding cost ratio than those when capacity is not tightly
constrained (e.g., capacity/mean demand � 1.67, 2.11, 3). This is explained as follows: When
capacity is tightly constrained, the total cost for both the no information sharing and information
sharing strategies increases quite fast as penalty costs increase. Thus, the percentage saving
reaches its peak value at a small ratio of penalty cost to inventory holding cost.

4.4. The Effect of the Number of Information Periods

To explore the benefits of information sharing as a function of the number of information
periods in one ordering period, we present in Figure 5 the percentage cost savings with

Figure 3. Fill rates: information sharing with the optimal policy vs. greedy policy.

908 Naval Research Logistics, Vol. 50 (2003)



information sharing relative to no information sharing for two production capacity levels. The
number of information periods, N, was 2, 4, 6, and 8 while the length of the ordering period was
assumed to be constant in all the models. The demand distribution during the entire ordering
period is assumed to be Poisson(�) with � � 24; hence demand in a single information period
follows Poisson(�/N). Similarly, the total production capacity, and the inventory holding cost
per item, in the entire ordering period are kept constant and are equally divided among the
different information periods. The ratio of penalty to holding cost is 4.75.

Figure 5 illustrates the following insights:

● As the number of information periods increases, the percentage savings increase.

Figure 4. The impact of penalty cost.

Figure 5. The impact of information sharing frequency.

909Simchi-Levi and Zhao: Information Sharing in a Two-Stage Supply Chain



● Most of the benefits from information sharing is achieved with a few information
periods. That is, the marginal benefit is a decreasing function of the number of
information periods. Specifically, the benefit achieved by increasing the number of
information periods from 4 to 8 is relatively small.

● Define the maximum potential benefit from information sharing to be the percentage
cost reduction when the manufacturer has unlimited capacity. A manufacturer with
a production capacity twice as much as mean demand can achieve a substantial
percentage of the maximum potential benefit, e.g., when the frequency of informa-
tion sharing is 4, the manufacturer can obtain nearly 50% of the cost benefit that a
manufacturer with unlimited production capacity can achieve.

4.5. Optimal Timing for Information Sharing

In this subsection we analyze the impact of the time(s) when information is shared on the
manufacturer’s total inventory and penalty costs.

4.5.1. Sharing Information Once in One Ordering Period

Figure 6 presents the manufacturer’s total cost as a function of the time when information is
shared, assuming that the manufacturer can only share information once in one ordering period.
The figure provides the normalized manufacturer’s cost as a function of a normalized time. That
is, time is normalized and is measured from 0 to 1, while the cost is normalized by the cost of
carrying one ordering period’s total expected demand for one ordering period. Thus, 0 in the x
coordinate implies that information is shared at the beginning of the ordering period, and 1
means that information is shared at the end of the ordering period and hence can not be utilized.
Demand distribution is assumed to be Poisson(24), and penalty over holding cost equals 4.

In Figure 7 we demonstrate the impact of the production capacity and penalty cost on the
optimal timing of information sharing. These figures illustrate the following insights:

● As information sharing is delayed, the manufacturer’s total cost first decreases and
then increases sharply. The cost reaches its maximum when information is shared
at the beginning or end of one ordering period.

● The optimal timing for information sharing is not in the middle of the ordering
period for any combination of production capacity and penalty cost; rather, it is in
the later half of the ordering period.

● Both the production capacity and penalty cost have minor impacts on the optimal
timing of information sharing. For all combination of production capacity and
penalty cost, the optimal timing is somewhere between 0.75 and 0.9 of the
normalized time, and very close to 0.8 on average.

● When capacity is very large, it is appropriate to postpone the timing of information
sharing to the last production opportunity in this ordering period; interestingly, this
is also the right thing to do when capacity is tightly constrained, i.e., postpone the
timing of information sharing until the last production opportunity. While the first
observation (i.e., large capacity) is quite intuitive, the second one (tight capacity) is
less intuitive. One possible explanation is that when capacity is very tight, the
manufacturer needs to build as much inventory as she can until the last production
opportunity, when she can review demand information and adjust production
quantity.
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4.5.2. Sharing Information Twice in One Ordering Period

Figures 8 and 9 present the manufacturer’s total cost as a function of t1/T and t2/T, assuming
that the manufacturer can share information at times t1 and t2 in a single ordering period. Similar
to the previous section, the figure provides the normalized manufacturer’s cost as a function of

Figure 6. The impact of the timing of information sharing on manufacturer’s cost.

Figure 7. Optimal timing for information sharing with different penalty cost.
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a normalized time. Demand distribution is assumed to be Poisson(10), penalty over holding
cost equals 4, and the production capacity is twice the mean demand.

In Figure 10 we study the impact of the production capacity and penalty cost on the optimal
timings of information sharing. The solid curves are the optimal timings for the second
information sharing, and the dash curves are the optimal timings for the first information
sharing. These figures illustrate the following insights:

● Sharing information twice in an ordering period helps the manufacturer achieve
more benefits than sharing information once; e.g., the manufacturer’s maximum
cost saving increases from 14.6% (when information is shared only once, i.e., Fig.
9, t2 � 1, t1 � 0.8) to 20.7% (when it is shared twice, i.e., t2 � 0.8, t1 � 0.3).

● The optimal t1 varies significantly as a function of the ratio of mean demand to
production capacity, and it approaches the end of the ordering period when the
available capacity is very large, i.e., when the ratio tends to zero. The ratio of
penalty to inventory holding cost also has an impact on the optimal value of t1

especially when the capacity utilization is neither very high nor very low.
● Unlike the optimal t1, the optimal value of t2 is not effected as much by either the

ratio of mean demand to production capacity or the ratio of penalty to inventory
holding cost.

● The optimal value of t2 is unlikely to be in the first half of the ordering period for
all combinations of parameters. On the other hand, the optimal value of t1 can be
either in the first or the second halves of the ordering period. Indeed, in our
computational results the optimal value of t1 varied from 0.22 to 0.82.

Figure 8. The impact of the timing of information sharing on manufacturer’s performance.
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5. CONCLUSION

In this paper, we consider a two-stage supply chain with a single retailer facing i.i.d demand
and a single manufacturer with finite production capacity. In the model, the manufacturer
receives demand information from the retailer even during time periods in which the retailer
does not order. By analyzing the model in a finite time horizon, we study the value of
information sharing for the manufacturer as well as how the manufacturer can utilize the shared
demand information effectively.

As for the optimal inventory control policy under information sharing, we find that the
following property holds under certain conditions: The optimal order-up-to-levels in any
ordering period are nondecreasing as we move from the first information period to the last one.

Figure 9. The impact of the timing of information sharing on manufacturer’s performance.

Figure 10. The impact of capacity and penalty cost on the optimal timings of information sharing.
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We demonstrate, through an extensive computational study, the potential benefits of sharing
demand information in terms of the manufacturer’s cost and service level. For instance, if the
manufacturer has excessive capacity, information sharing can be very beneficial. Indeed, the
manufacturer can cut down on inventory costs while maintaining the same service level to the
retailer by using information effectively. One interesting observation is that the manufacturer
can realize most of the benefits from information sharing if the retailer shares demand
information with the manufacturer only a few times in each ordering period.

If the retailer has only one opportunity to share information with the manufacturer, then the
best time to share information is in the later half of the ordering period. Parameters such as the
production capacity and penalty cost have limited impact on the optimal timing. If the retailer
has two opportunities to share information with the manufacturer, the best timing of first
information transferring is sensitive to the changes of capacity and penalty cost, while the
optimal timing of the second information sharing is not.

It is appropriate to point out some limitations of our model. First, our focus in this model is
exclusively on the impact of information sharing on the manufacturer but not the retailer. Second, the
assumption that the retailer controls her inventory using an order-up-to policy with a constant
order-up-to level, i.e., a level that does not change over time, implicitly implies our assumption that
the retailer is not able to anticipate future shortages at the manufacturer. Of course, if the retailer is
able to anticipate future shortages, then the retailer may inflate her orders so that she will receive the
amount she needs. This type of behavior is not captured by our model.

APPENDIX A: PROOF OF LEMMA 1

The proof of parts (a) and (b) are identical to the one in Federgruen and Zipkin [7]. Here we focus on the proof of part (c).
Let us first consider the last ordering period in the planning horizon, and rewrite the dynamic programming

formulation,

U�n�x� � ��c � hn�1�x � V�n�x�,

V�n�x� � minx�y�x�C	J�n�y�


J�n�y� � � cy � hn�1y � �U�n�1�y�, n � 2, . . . , N,

cy � E�L�y, � D�� � �E�U�n�1�y � � D��, n � 1,

as

J�n�y� � cy � hn�1y � �U�n�1�y�

� �1 � ��cy � �hn�1 � �hn�2�y � �V�n�1�y�

� �1 � ��cy � �hn�1 � �hn�2�y � � miny�y��y�C	J�n�1�y��
, n � 2, . . . , N,

J�1�y� � cy � E�L�y, � D��.

The last equation holds since the salvage cost U0� � V0� � 0. To simplify the notation, define

r�n�y� � � �1 � ��cy � �hn�1 � �hn�2�y, 2 � n � N,

cy � E�L�y, � D��, n � 1.

The minimal total cost for this ordering period J�N( yN) can be obtained by plugging in the equation of J�n( y) recursively
for n � N � 1, . . . , 1.
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J�N�yN� � r�N�yN� � � minyN�yN�1�yN�C	r�N�1�yN�1� � · · · � � miny3�y2�y3�C	r�2�y2� � � miny2�y1�y2�C	r�1�y1�

· · ·
.

(7)

Notice that for all n � N, N � 1, . . . , 1, if y � �n minimizes r�n( y�) in interval [ y, y � C], then

�miny�y��y�C	r�n�y��
 � r�n�y�� � �r�n�y � �n� � r�n�y�� ���n�,

since r�n( y) is at most proportional to a linear function of y. Because �n � C, the absolute difference between (7) and
¥n�1

N �N�n r�n( yN) is bounded by a finite number, which is independent of y. Finally, expanding ¥n�1
N �N�n r�n( y),

we obtain ¥n�1
N �N�n r�n( y) � cy � hN�1y � �N�1E(L( y, ¥ D)). Hence, in order for Jn( y) 3 �� for all n when

y 3 ��, we need �N�1� � c � hN�1.
The proof for other ordering periods is similar. �

APPENDIX B: PROOF OF PART (c) OF LEMMA 3

The case when y 3 �� is straightforward. Thus, we only need to show that if �N�1� � c � hN�1, then Jn( y)
3 �� for all n � N, N � 1, . . . , 1 when y 3 ��.

For this purpose, let us consider the last ordering period in the planning horizon. From Eq. (4),

Jn�y� � �n�y� � �E�Un�1�y � D��

� rn�y� � �E�Vn�1�y � D��

� rn�y� � �E�miny�D�y��y�D�C	Jn�1�y��
�, 2, . . . , N

J1�y� � r1�y�,

where the salvage cost U0� � V0� � 0, and

rn�y� � � �1 � ��cy � �hn�1 � �hn�2�y � ��c � hn�2��, 2 � n � N,
cy � E�L�y, D��, n � 1.

The minimal total cost for this ordering period JN( yN) can be obtained by plugging in the equation of Jn( y) recursively
for n � N � 1, . . . , 1.

JN�yN� � rN�yN� � �E�minyN�D�yN�1�yN�D�C	rN�1�yN�1� � · · · � �E�miny2�D�y1�y2�D�C	r1�y1�
�· · ·
�. (8)

Similarly to Appendix A, we observe that for all n � N, N � 1, . . . , 1,

�E�miny�D�y��y�D�C	rn�y��
� � rn�y�� � �E�rn�y � �n�D��� � rn�y��,

with D � C � �n(D) � D, and

�E�rn�y � �n�D��� � rn�y�� � ��
��

��

rn�y � �n�D�� � rn�y��fD�D� dD�

���
��

��

�n�D�fD�D� dD� ,

since rn( y) is at most proportional to a linear function of y. Because ����
�� �n(D) fD(D) dD� � max{�� � C�, ���},

the absolute difference between (8) and ¥n�1
N �N�n rn( yN) is bounded by a finite number, which is independent of y.

Finally, expanding ¥n�1
N �N�n rn( yN) we obtain ¥n�1

N �N�n rn( y) � cy � hN�1y � �N�1E(L( y, D)) � constant.
Hence, in order to have Jn( y) 3 �� for all n when y 3 ��, we need �N�1� � c � hN�1.

The proof for other ordering periods is similar. �
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