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Drug supply costs frequently account for a significant portion of a pharmaceutical company’s
total clinical trial spending. This paper examines the optimal production lot size decisions
for supply chains that support clinical trials in order to reduce these drug supply costs.
One key factor that differentiates the supply chains for clinical trials is the risk of failure,
meaning that the investigational drug is proven unsafe or ineffective during human testing.
Upon failure, any unused inventory is essentially wasted and needs to be destroyed. To avoid
waste, manufacturers could produce small lot sizes. However, high production setup costs
lead to manufacturers opting for larger lot sizes and very few setups. To optimally balance
this tradeoff of waste and destruction versus production inefficiency, this paper generalizes
the Wagner-Whitin model (W-W model) to incorporate the risk of failure. We show that
this stochastic model, referred to as the failure-risk model, is equivalent to the deterministic
W-W model if one adjusts the cost parameters properly to reflect failure and destruction
costs. We then analyze the impact of failure probabilities on the optimal lot size decisions to
show that increasing failure rates lead to reduced lot sizes and that properly incorporating
the risk of failure into clinical trial drug production can lead to substantial cost savings as
compared to the W-W model without the properly adjusted parameters.

1. Introduction

For every new drug that reaches a pharmacy’s shelf, roughly 5,000 to 10,000 other po-

tential medicines have failed to achieve commercialization (Pharmaceutical Research and

Manufacturers of America 2007). For a pharmaceutical or bio-tech company attempting

to create a new medicine or treatment, failure is not a surprise, but rather an event to be

planned for. In this paper, we analyze the impact of failure during clinical trials on the

production-inventory decisions for investigational drugs and discover that an extension of

the Wagner-Whitin model (Wagner and Whitin 1958) can greatly improve efficiency in the

clinical trial supply chain.
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One of the most important hurdles prior to the U.S. Food and Drug Administration’s

(FDA) approval of a new drug is the testing of a drug candidate in clinical trials. Three

phases of clinical trials are usually required to test both safety and efficacy of a potential

treatment in human subjects. Typically, Phase I involves 50 to 100 healthy individuals,

Phase II recruits a few hundred potential patients, and Phase III seeks to test the drug

candidate in a few thousand patients. While we know how many patients are needed in each

phase of the clinical trial, there is an inherent uncertainty associated with each trial: the

risk of failure. Indeed, only 21.5% of drug candidates entering clinical trials actually achieve

FDA approval (DiMasi et al. 2003). Many of these drug candidates that fail to pass through

the clinical trial hurdle are well documented in the financial press. Below is just one example

from the New York Times (Berenson 2006):

The news came to Pfizer’s chief scientist, Dr. John L. LaMattina, as he was

showering at 7 a.m. Saturday: the company’s most promising experimental drug,

intended to treat heart disease, actually caused an increase in deaths and heart

problems. Eighty-two people had died so far in a clinical trial, versus 51 people

in the same trial who had not taken it.

Within hours, Pfizer, the world’s largest drug maker, told more than 100 trial

investigators to stop giving patients the drug, called torcetrapib. Shortly after

9 p.m. Saturday, Pfizer announced that it had pulled the plug on the medicine

entirely, turning the company’s nearly $1 billion investment in it into a total loss.

The small success rate of clinical trials is painful to a pharmaceutical company’s balance

sheet because of the enormous amounts of time, labor, and materials required to perform

a clinical trial. On average, 37% of the $100 billion R&D spending by pharmaceutical

companies is spent on the clinical trial process (Cutting Edge Information 2004, Thomson

CenterWatch 2007). Annual supply chain spending for drugs under clinical trials can be

substantial, e.g., accounting for 40% or more of the total clinical trial spending (see §2). For

just one drug candidate, a company can spend millions of dollars every quarter to produce

supplies for the clinical trial. When failure in a clinical trial occurs, every dollar spent on

manufacturing, packaging, and distribution of unused clinical trial supplies is wasted and in

most cases, unused material must be returned to a proper disposal facility for destruction

(English and Ma, 2007). For example, Cotherix Inc., estimated $126,000 in destruction costs

for an obsolete drug that was valued at $1.5 million (Cotherix 2006).
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It would be unfair of us to label all post-failure drug supply as waste. Inventory is needed

to ensure that as patients are recruited to participate in the study, drug supply is available.

Any delays in this phase of testing become one less day of patent protection available to

the drug. According to Clemento (1999), every extra day of patent availability is worth $1

million for a typical drug. Since patient recruitment is the typical bottleneck in conducting

clinical trials, shortages of clinical drug is considered an unacceptable delay and our model

assumes no backlogging of demand. That being said, one would usually be economically

foolish to produce enough supply to support all three phases of a clinical trial at once.

Production of investigational drugs is typically characterized by high costs (both fixed

and variable) due to the low demand volume, low yield and the premature manufacturing

process. In addition, at each step in the synthesis of the chemical compounds, rigorous

quality control procedures are required to ensure that investigational drugs “are consistently

produced and controlled to the quality standards appropriate to their intended use.” (George

2005) Often, active ingredient production for a drug candidate is a costly process and may

require unique manufacturing equipment and processes. Thus, both the fixed and variable

production costs tend to be much higher for investigational drugs than approved drugs which

have been scaled up for mass production.

In this paper, we present a mathematical model for production planning to balance the

two opposing forces of 1) high fixed production costs pushing for large lot sizes and 2) high

failure costs which favor smaller lot sizes. High fixed costs for production, in the form of

both time and money, lend support to producing large lot sizes. Alternatively, the high risk

of failure, the high production variable cost and inventory carrying cost argue for smaller

lot sizes. Smaller lot sizes would avoid wasting unused clinical drug supplies as well as

the significant cost of destroying the unused material, but can result in high costs due to

multiple production setups and more numerous quality control activities. We accommodate

this environment by generalizing the Wagner-Whitin (W-W) model (Wagner and Whitin,

1958) to incorporate a stochastic component, namely, the risk of failure, we will refer to this

model as the failure-risk model. We make the following contributions:

• Every failure-risk model is equivalent to a corresponding deterministic W-W model if

one adjusts the cost parameters properly to reflect failure risk and destruction costs,

so many classic results of the W-W model still apply. Most interestingly, the planning

horizon theorem indicates that in the failure-risk model, learning (e.g., the failure
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probability) as the clinical trial proceeds does not affect optimal supply decisions under

certain conditions.

• We characterize the impact of failure risk on the optimal lot sizes. We show that an

increase in failure risk leads to changes in effective inventory carrying costs and time

discount factors, which always result in the same or more frequent production.

• We conduct a comprehensive numerical study using various environments that clin-

ical trial manufacturers may face. We show that the failure-risk model can lead to

substantial costs savings as compared to using the W-W model which ignores the risk

of failure. We also show how changes to the model’s parameters affect the expected

savings.

The remainder of this paper is organized as follows. In §2, we provide empirical data to

demonstrate the significant financial resources dedicated to the clinical trial supply chain.

We review the related literature in §3. The model and analysis are presented in §4, and

their extensions are discussed in §4.1. The potential benefits of properly accounting for

failure are shown in an illustrative example in §5. A more thorough numerical study to test

the effectiveness of the model under real-world scenarios is performed in §6. Finally, we

summarize the paper and discuss future research directions in §7.

2. Clinical Trial Supply Chain Spending

In this section, we present empirical evidence for the financial significance of the clinical

trial supply chain. The clinical trial supply chain is an enormously complex process and the

money flow within this chain lacks detailed breakdowns in the literature. We investigate

the Securities and Exchange Commission filing’s of publicly traded companies to identify

supply chain costs associated with new drug development. As a result, supply chain models

that seek to reduce these costs are deserving of scholarly attention. We specifically look for

smaller publicly traded companies who are seeking approval for at most a handful product

candidates. This allows us to avoid the intentional ambiguity in larger company statements

that makes it difficult to follow the costs associated with any one drug or specific clinical

trial. In our search of public records, we found three companies’ filings that allow for a more

detailed look at clinical trial spending (see Ariad Pharmaceuticals Inc. 2004-2007, Acusphere

Inc. 2004-2007, Allos Therapeutics Inc. 1999-2007).
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2003 2004 2005 2006 Total
Clinical Trial Phase Phase I Phase II Phase II Phase II –

Manufacturing Spend (in millions) $1.27∗∗ $5.87 $9.37 $5.27 $21.78
Total Clinical Spending (in millions) $2.54 $11.54 $26.31 $15.58 $55.97
Manufacturing Spend as % of Total 50% 51% 36% 34% 39%

** manufacturing spend is estimated at 50% of total clinical spending for 2003

Table 1: Percentage of Clinical Trial Expenses Spent of Manufacturing-Related Activities
for Ariad Pharmaceutical’s Deforolimus Drug Candidate.

The first company is Ariad Pharmaceuticals Inc, whose lead product candidate, De-

forolimus, remains in Phase III trials as of November 2007. The product is a small molecule

compound for treating certain types of cancer. Manufacturing of the product is not enor-

mously complex and the product is readily synthesized using conventional fermentation tech-

niques. Although the manufacturing process was developed in-house, the company has relied

on third-party manufacturers to supply its clinical trial material. Because of Ariad’s reliance

on third-party manufacturers, Ariad’s 10-K’s from fiscal years 2004 to 2006 specifically men-

tions changes to clinical trial expenses as a result of changes in manufacturing-related costs.

For fiscal year 2003, a breakdown of clinical trial costs is not given so we estimate the manu-

facturing spend in this year. For 2007, clear breakdowns of manufacturing-related costs are

no longer available due to a 2007 deal between Ariad and Merck which allows for the sharing

of Deforolimus development costs. Using the available data, we estimate that approximately

39% of Ariad’s overall clinical trial spending was spent on manufacturing-related activities

(i.e. part of supply chain costs). The supporting data are shown in Table 1.

Similar to our analysis of Ariad’s annual filings, we find cost information available from

the 10-K filings of Acusphere, Inc. This company’s lead product candidate, Imagify, is a

cardiovascular drug that has been in Phase III clinical trials since late 2003 and Acusphere

expects these trials to continue in 2008. Unlike Ariad’s Deforomilus, Acushpere’s Imagify

requires custom and proprietary manufacturing technology. Despite this difference, the per-

centage of clinical trial spending dedicated to manufacturing-related activities is similar to

that of Ariad’s. As shown in Table 2, around 40% of Acusphere’s clinical trial spending has

gone towards manufacturing-related activities for the fiscal years 2003 through 2006. 1

In contrast to the previous two companies, Allos Therapeutics has multiple product can-

didates, nonetheless their annual filings provide usable detail on their clinical manufacturing

1Acusphere went public in October 2003, thus earlier expense data relevant to our analysis is not available.
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2003 2004 2005 2006 Total
Clinical Trial Phase Phase II/III Phase III Phase III Phase III –

Manufacturing Spend (in millions) $1.7 $7.9 $8.0 $11.4 $29.0
Total Clinical Spending (in millions) $8.6 $18.5 $24.3 $21.9 $73.3
Manufacturing Spend as % of Total 20% 43% 33% 52% 40%

Table 2: Percentage of Clinical Trial Expenses Spent of Manufacturing-Related Activities
for Acushpere Incorporated’s Imagify Drug Candidate.

1995 - 1998 1999 - 2002 2003 - 2006 Total
Manufacturing Spend (in millions) $3.7 $11.5 $13.9 $29.1
Total R&D Spending (in millions) $18.2 $56.7 $61.6 $136.4

Manufacturing Spend as % of Total R&D 20.4% 20.3% 22.6% 21.3%

Table 3: Percentage of Research and Development Spending on Clinical Trial Manufacturing-
Related Activities for Allos Therapeutics’ Three Product Candidates.

costs. These costs are separated from all other research and development costs. Unfor-

tunately, total clinical trial costs are lumped into Allos Therapeutics’ R&D number, so a

direct comparison of Allos’ spending to our previous two examples is not possible. However,

we do have data on twelve years of clinical trial manufacturing costs as a percentage of

total research and development spending. Through analysis of these 12 years, we find that

21.3% of Allos Therapeutics’ R&D spending from 1995-2006 has been spent on clinical trial

manufacturing-related activities. See Table 3 for the yearly breakdown of spending:

It is worth noting that the two drug candidates in the first two examples are small

molecule drugs. Discussions with pharmaceutical R&D researchers and industry consultants

unanimously indicate that large molecule treatments, such as those developed by bio-tech

companies using live organisms or their components, tend to have much more significant drug

supply costs during clinical trials than small molecule chemical (non-biologic) compounds.

This is true because large molecule drugs typically require many more steps in production,

have much lower yield, and require extra costs on shipping and storage. Our third example

comes from a large molecule bio-tech company, and anecdotally, this supports the idea that

large molecule manufacturing costs are more costly than small molecule manufacturing costs.

Although the above analysis of clinical trial supply chain spending is limited to three

data points, it is readily apparent that manufacturing-related activities can be a significant

source of costs during clinical trials. In the first two examples, roughly 40% of clinical

trial spending is attributable to supplying the investigational drugs. Given our previous
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estimate of 37% of research and development spending being attributable to clinical trials,

a potentially unjustifiable extrapolation of our data points suggests that 14.8% of the $100

billion spent annually on R&D is for clinical trial supply chain activities. Our analysis of

Allos Therapeutics shows that they spent 21.3% of their R&D on clinical trial supply chain

activities. Thus, even the very rough estimate of 14.8% of pharmaceutical R&D being spent

on the clinical trial supply chain has some confirmatory evidence towards the significant

magnitude of spending devoted to the clinical trial supply chain.

3. Literature Review

Because of the interdisciplinary nature of this work, we shall first review literature that relates

the disciplines of production planning and clinical research. Then, we highlight papers on

dynamic economic lot size models and stochastic inventory models. Finally, we turn our

attention to literature on research and development (R&D) supply chains.

Investigations of integrating drug supply with the clinical trial process are found in the

medical and pharmaceutical literature. For example, George (2005) presents common issues

encountered during clinical trial supply management and proposes coordination and flexibil-

ity as keys to success. A thorough description of clinical material manufacturing practices

is provided by Bernstein and Hamrell (2000). In their paper, the authors advocate coordi-

nating the disciplines of manufacturing and clinical programs to achieve efficient execution

of drug development Their study is conceptual and qualitative.

Quantitative research on production planning and capacity expansion under clinical trial

uncertainty has been conducted in the chemical engineering literature. Gatica, et al. (2003)

simultaneously determines the optimal capacity and production decisions for multiple clinical

trial drugs in different stages of their life-cycle. The underlying problem is a large-scale

multi-stage stochastic program with integer and continuous variables and is solved as a

mixed-integer linear program. Shah (2004) provides a recent survey for this line of research

and an article by Colvin and Maravelias (2007) highlights more recent advances.

This paper differs from the previous work on clinical trial supply chains by its focus. We

study a simpler model with one drug candidate and aim at deriving structural results which

provide managerial insights and enable efficient solution algorithms. Thus, our work is more

closely related to the dynamic economic lot size (DEL) models and stochastic inventory

models studied in the operations management literature.
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There is a long lasting interest and huge body of literature on DEL models for production-

inventory systems with time-varying but known demand. Wagner and Whitin (1958) pro-

poses the basic model (referred to as the W-W model hereafter). The paper characterizes

several important system properties and develops a polynomial solution algorithm. Since

then, many extensions and variations of the model have been studied. For more general cost

functions, see Eppen, et al. (1969), Veinott (1963) and Zangwill (1969). For more efficient

solution algorithms, see Aggarwal and Park (1993), Federgruen and Tzur (1991) and Wagel-

mans, et al. (1992). For DEL models with various capacity constraints, see, e.g., Florian, et

al. (1980) and Shaw and Wagelmans (1998). Zipkin (2000) provides a thorough review of

models and solution techniques on this topic.

This paper extends the classical W-W model to include the risk of failure. This feature

transforms the W-W model into a stochastic production-inventory model. The most related

stochastic inventory models to this paper are those on single-stage systems with world-driven

demand. Iglehart and Karlin (1962) analyzes optimal inventory ordering policies for non-

stationary stochastic demand. Johnson and Thompson (1975) models demand as mixed

autoregressive-moving average time series. Song and Zipkin (1993) and Sethi and Cheng

(1997) characterize the optimal inventory control policies for various inventory systems with

Markov-modulated demand. Comprehensive reviews are provided by Zipkin (2000) and

Porteus (2002).

The failure-risk model in this paper can be regarded as a special case of the models with

Markov-modulated demand. Here demand in each period is a Bernoulli random variable, and

if demand ever becomes zero, it stays zero for the rest of the planning horizon. While it is

known that under certain regularity conditions, the state-dependent (s, S) policy is optimal

for such systems with fixed production costs, the special structure of the demand process in

a clinical trial supply chain allows us to develop much stronger results (e.g., equivalence to

W-W model) and new insights (e.g., impact of failure risk).

The demand structure in this paper is similar to those analyzed in the inventory models

with “sudden death obsolescence”. Brown, et al. (1964) introduces the model under periodic-

review where demand may cease at an uncertain future date. A Bayesian procedure is

employed to update demand distribution and a dynamic program is proposed to find the

optimal solution. Pierskalla (1969) considers a model with stochastic demand and convex

cost functions, and shows that the base-stock policy is optimal. Song and Zipkin (1996)

generalizes the model to treat Markov-modulated demand. Katok, et al. (2001) considers
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a model similar to ours but with random demand. To derive simple heuristic solutions, the

authors analyzed their model with deterministic demand and found that it is a variant of the

W-W model. Their paper proves only the zero-inventory property for this model and derives

a heuristic solution to the stochastic problem based on this property. Katok and Xu (2001)

provides more details on the mathematic model and technical development which expand the

Katok, et al. (2001) paper. While we study a similar model (with some differences on the

cost structure) as the previous two papers, our paper takes the analysis of the deterministic

demand case further by proving the full equivalence of production planning in a demand

failure environment to a re-parameterized Wagner-Whitin model. We also leverage this

equivalence to characterize the effect of failure on lot sizing decisions and show conditions

under which savings may be achieved. Lastly, a few author have studied sudden death

obsolescence models in continuous time with deterministic demand and developed EOQ

types of solutions, see, David, et al (1997) and references therein.

To overcome the complexities of existing stochastic obsolescence models, we study failure

in the supply chain by focusing on a particular type of demand uncertainty that we term

demand failure. Demand failure is defined as the sudden ceasing of a deterministic non-

stationary demand stream. While the point of failure is not known, we do assume that

failure probabilities in each period are known (reference ???). By employing the assumption

of demand failure, we are able to yield both clean and insightful results. As Song and Zipkin

(1996) note in their study of obsolescence, which assumes a stochastic demand stream with

random lifetime, clean results are not forthcoming in fully stochastic models:

Generally, we find that obsolescence does (or should) have a substantial impact

in the way inventories are managed. The nature of these effects, moreover, is

fairly intricate. It appears that obsolescence cannot be captured in a simpler

model through parameter adjustments.

In contrast, by leveraging the deterministic demand assumption, we can formulate the

model into a dynamic program and provide a simple and clean result: the failure-risk model

can be transformed into a W-W model where the adjusted cost parameters represent the

effect of the failure risk and destruction cost. This result connects the failure-risk model with

the vast literature of the W-W models, and thus, many results of the latter directly apply

here. In addition, adjusting parameters of the W-W model is a simple way to include failure

into production planning and thus, is more likely to be implemented than more complex
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obsolescence models. Lastly, we believe the demand failure assumption to be tenable to

practitioners who can often accurately predict demand. According to a recent survey of

clinical supply managers conducted by Bearing Point, 75% of Phase I and roughly 50% of

Phases II-III SKU-level clinical supply forecasts are within 10% of actual demand (Kumar

2007).

Our work is also related to the literature on R&D supply chains. Most of this literature

focuses on supply chain design to support a product entering the market for the first time.

However, much less attention has been devoted to the actual development supply chain

(Krishnan and Ulrich 2001, Pisano 1997). At a pharmaceutical company, both the supply

chain design for production ramp-up and the material supply during the development stage

are important decisions. The focus of this paper is on creating a model for the latter.

More recently, there is a growing interest and literature on combining R&D and sup-

ply chain decisions. Hult and Swan (2003) provides a conceptual framework to analyze

the interdependencies of product development and supply chain activities. Specific to the

pharmaceutical world, Pisano (1997) presents strategic guidelines for effectively linking man-

ufacturing strategy with the highly uncertain world of drug candidate development. Along

the lines of co-development, some works study the supplier-buyer relationship in co-designing

a product (e.g., Appleyard 2003) by utilizing industrial organization models without details

specific to material planning. Similarly, Iyer et al. (2005) study this supplier-buyer rela-

tionship from the perspective of contractual design to effectively share resources. A notable

pharmaceutical drug discovery example is presented in this work. In terms of component

design, empirical studies of parts strategy are conducted in the literature, see Clark (1989)

and Fisher, et al. (1999). Lastly, allocating scarce resources to a pipeline of promising drug

candidates is taken up as a portfolio problem (Girotra et al. 2007, Blau et al. 2004).

4. The Model

Consider an investigational drug in a clinical trial over a finite time horizon with periods

ranging from t = 1, 2, . . . , N . We assume that demand is known for the drug in all periods

(see justifications in §3). Demand and costs in each period are nonnegative. If the trial

succeeds at the end of period t, we make production decisions and move to next period.

Otherwise, we stop and all remaining inventory is wasted and is recycled or destroyed. The

known demand must be satisfied and no backorders are allowed. Because the production
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cycle time is often much shorter than a clinical trial duration, we assume zero lead-time for

production.

The system has the following state variables at the beginning of period t:

• I: inventory level.

• θ: system status indicator, success (θ = 1), failure (θ = 0).

The system has the following parameters,

• ht: holding cost for inventory carried from period t to period t+ 1.

• st: fixed production cost at period t if a production is initiated.

• αt: failure probability at the end of period t.

• βt ≡ 1− αt: success probability at the end of period t.

• dt: demand in period t.

• ct: production variable cost at period t.

• rt: recycle/destruction cost at period t for any inventory un-used.

The estimates of failure probabilities in various therapeutic classes are readily available

from the literature (Gatica, et al. 2003). It is possible that the failure probability of a trial

does not depend on the results of previous trials if they are testing on different criteria, e.g.,

efficacy vs. safety. In this case, αt is the unconditional probability of failure in the trial.

It is also possible that the failure probabilities depend on the results of previous tests. For

instance, during multiple trials for effectiveness, success in early trials can provide a strong

indicator for success in on-going trials. In this case, αt is effectively the failure probability

conditioning on successes to date.

The action at period t is to produce xt ≥ 0. Let initial inventory level I0 = 0. Define

ft(θ, I) to be the minimum expected cost for period t through N with initial inventory I and

system status θ. Let δ(xt) be the indicator function of xt > 0, and h0 = 0. The dynamic

programming recursion can be written as follows,

ft(0, I) = rtI, 1 ≤ t ≤ N (1)

ft(1, I) = min
{xt≥0, I+xt≥dt}

{ht−1I + δ(xt)st + ctxt + αtft+1(0, I + xt − dt) +
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βtft+1(1, I + xt − dt)}, t = 1, 2, . . . , N − 1 (2)

fN(1, I) = min
{xN≥0, I+xN=dN}

{hN−1I + δ(xN)sN + cNxN}. (3)

Combining Eqs. (1)-(2), and noting that I + xt − dt is the inventory at the beginning of

period t+ 1, we can make the following transformation,

gt(I) =
αt−1rt
βt−1

I + ft(1, I),∀t = 1, 2, . . . , N, (4)

where α0 = 0. Then, gt(I) satisfies the following recursive equations,

gt(I) = min
{xt≥0, I+xt≥dt}

{αt−1rt + βt−1ht−1

βt−1

I + δ(xt)st + ctxt + βtgt+1(I + xt − dt)},

t = 1, 2, . . . , N − 1

gN(I) = min
{xN≥0, I+xN=dN}

{αN−1rN + βN−1hN−1

βN−1

I + δ(xN)sN + cNxN}.

Note that this formulation is identical to the W-W model with modified inventory holding

cost and a time discount factor βt at period t. One can adjust the cost parameters at each

period, and by doing so, the dynamic program reduces to the Wagner-Whitin model with

variable production costs. Let h′0 = 0, and define the effective production costs and holding

costs as follows,

s′1 = s1

s′t = st · Πt−1
j=1βj, 1 < t ≤ N

c′1 = c1

c′t = ct · Πt−1
j=1βj, 1 < t ≤ N

h′1 = α1r2 + β1h1

h′t = (αtrt+1 + βtht) · Πt−1
j=1βj, 1 < t < N.

Hence,

g′t(I) = min
{xt≥0, I+xt≥dt}

{h′t−1I + δ(xt)s
′
t + c′txt + g′t+1(I + xt − dt)}, t = 1, 2, . . . , N − 1(5)

g′N(I) = min
{xN≥0, I+xN=dN}

{h′N−1I + δ(xN)s′N + c′NxN}. (6)

Eqs. (5)-(6) show that one can transform the stochastic failure-risk model to an equivalent

deterministic W-W model with properly adjusted production and inventory holding costs.

Note that the adjusted (or effective) inventory holding cost is the weighted average of the
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destruction cost and the regular inventory holding cost which is discounted by the success

probabilities to date.

Because all cost parameters defined in Eqs. (5)-(6) are nonnegative, by Zipkin (2000,

§4.3.3), the “zero-inventory property” holds. Specifically, let It be initial inventory level at

period t, and we can formally state the “zero-inventory property”.

Theorem 1 (The Zero Inventory Property) For the dynamic program defined in Eqs.

(1)-(3), the following claims hold.

1. For each period t, It · xt = 0.

2. xt = 0 or xt =
∑k
j=t dj.

3. If dt is satisfied by some xτ for τ < t, then dj, j = τ + 1, . . . , t− 1 is also satisfied by

xτ .

4. Given that It = 0 for period t, it is optimal to consider periods 1 through t − 1 inde-

pendent of other periods.

For the ease of analysis, we can further transform the dynamic program into the W-W

model without variable production costs. Note that c′txt = c′t(I + xt − dt) − c′t(I − dt) for

t = 1, 2, . . . , N .

g′t(I) = min
{xt≥0, I+xt≥dt}

{(h′t−1 − c′t)I + δ(xt)s
′
t + c′t(I + xt − dt) + c′tdt + g′t+1(I + xt − dt)},

t = 1, 2, . . . , N − 1

g′N(I) = min
{xN≥0, I+xN=dN}

{(h′N−1 − c′N)I + δ(xN)s′N + c′NdN}.

To remove the constants ctdt and combine terms which are functions of I + xt − dt, we

define,

Gt(I) = c′t−1I + g′t(I)− [c′tdt +
N∑

n=t+1

(c′ndn · Πn−1
j=t βj)], t = 1, 2, . . . , N − 1

GN(I) = c′N−1I + g′N(I)− c′NdN ,

where c′0 = 0. The recursion for Gt is as follows,

Gt(I) = min
{xt≥0, I+xt≥dt}

{Ht−1I + δ(xt)St +Gt+1(I + xt − dt)}, t = 1, 2, . . . , N − 1(7)

GN(I) = min
{xN≥0, I+xN=dN}

{HN−1I + δ(xN)SN}, (8)
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where

St = s′t, 1 ≤ t ≤ N

H1 = c1 − c2 + α1(c2 + r2) + β1h1 (9)

Ht = [ct − ct+1 + αt(ct+1 + rt+1) + βtht] · Πt−1
j=1βj, 1 < t < N. (10)

Note that Ht consists of two parts: the first part is the difference between production costs

in two successive periods; the second part is the weighted average of the total loss due to

failure (including the production and destruction costs, referred to as the failure cost) and

the regular inventory holding cost.

Define F (j, i) to be the minimum cost to cover all demands in periods j, j+ 1, . . . , i with

Ij = 0 and Ii+1 = 0 if j ≤ i; let F (j, i) be zero otherwise. The forward formulation to

compute F (j, i) is as follows.

F (j, i) = min{ min
j≤k<i

{Sk +
i−1∑
n=k

Hn

i∑
l=n+1

dl + F (j, k − 1)}, Si + F (j, i− 1) }, j < i. (11)

The backward formulation works as follows,

F (j, i) = min{ Sj + F (j + 1, i), min
j<k≤i

{Sj +
k−1∑
n=j

Hn

k∑
l=n+1

dl + F (k + 1, i)} }, j < i. (12)

To compute the optimal solution and optimal cost functions, one can use the well known

algorithms of Wagner and Whitin (1958), Federgruen and Tzur (1991) and Wagelmans, et

al. (1992).

Because the failure probability αt only affects the holding costs Hj for j ≥ t, it follows

from the forward formulation, Eq. (11), that the Planning horizon Theorem of Wagner-

Whitin can be applied and interpreted in our model as follows.

Theorem 2 (The Planning Horizon Theorem) If Ht ≥ 0 for all 1 ≤ t < N , then

1. If the optimal solution for F (1, t) in Eq. (11) is t∗ ≤ t, then to solve F (1, τ) with τ > t,

one only needs to consider F (t∗, τ). In other words, if it is optimal to incur a set-up

cost at period t∗ when periods 1 through t are considered alone, then it is optimal to

incur a set-up cost at period t∗ in any τ -period model.

2. The optimal solution for periods 1 to t∗ does not change even if we can update αj for

j ≥ t∗ along with time.
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If Ht < 0, Theorem 2 may not hold, see Eppen, et al. (1969) for more discussion. Due to

the high destruction cost and failure risk, Ht will be positive in clinical trial supply chains.

Hence, we assume Ht ≥ 0 for all 1 ≤ t < N for the rest of the paper.

Now we study the impact of failure risk on the optimal lot size decisions. Without loss

of generality, let N > 1. The following lemma shows that if the inventory holding cost of a

period increases, then for any t ≤ N , the optimal production quantity of a planning horizon

from t to N is non-increasing.

Lemma 1 Define x∗j to be the optimal production quantity at period j for F (j,N). If Hi <

H̃i for a given period i = 1, 2, . . . , N while everything else remains identical, then x∗j ≥ x̃∗j

for all j = 1, 2, . . . , N .

Proof. If j > i, then Hi has no impact on F (j,N), so x∗j = x̃∗j . Consider j ≤ i. For the

planning horizon j through N , suppose the optimal solution under (H1, . . . , Hi, . . . , HN) is

to produce at periods j∗0 , j
∗
1 , . . ., where j∗0 = j. If j∗1 exists and j∗1 ≤ i, then by Theorem 2,

Hi has no impact on x∗j , and so x∗j = x̃∗j .

If j∗1 exists but j∗1 > i, by Eq. (12),

F (j,N) = min{ Sj + F (j + 1, N), min
j<k≤N

{Sj +
k−1∑
n=j

Hn

k∑
l=n+1

dl + F (k + 1, N)} }. (13)

Consider k = i. Increasing Hi to H̃i does not change the kth term in Eq. (13). If k > i,

then the cost of the kth term increases by (H̃i − Hi)
∑k
l=i+1 dl. Note that the increment is

increasing in k. Thus the fact that j∗1 exists and j∗1 > i implies ̃∗1 ≤ j∗1 and x̃∗j ≤ x∗j .

If j∗1 does not exist, that is, production at period j should cover all demand from period

j to N , x̃∗j ≤ x∗j holds trivially. 2

The next lemma shows that if a discount factor is applied to the cost parameters of

a period and its future periods, then the optimal production quantity at period t for any

planning horizon from t to N is non-increasing.

Lemma 2 For a given period i = 1, 2, . . . , N , if we multiply the cost parameters of period

i and its future periods by discount factor γ ∈ (0, 1) while keeping everything else identical,

the optimal solution x∗j for F (j,N) does not increase for all j.

Proof. First consider j > i. Multiplying a constant, γ, to all cost parameters of F (j,N)

only changes it to γF (j,N). Thus, x∗j does not change.
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Consider j ≤ i. If j∗1 ≤ i − 1, then multiplying the cost parameters of period i and

its future periods by discount factor γ does not affect F (j, j∗1), by Theorem 2, x∗j does not

change. If j∗1 = i, then multiplying si by γ makes the selection j∗1 more attractive (see Eq.

(11)), so x∗j does not change. If j∗1 > i, then consider the kth term in Eq. (13) where k ≥ i.

Without the discount factor the term has the form

ak = Sj +
k−1∑
n=j

Hn

k∑
l=n+1

dl + F (k + 1, N).

With the discount factor γ, the kth term in Eq. (13) has the form

bk =

{
Sj +

∑k−1
n=j Hn

∑k
l=n+1 dl + γ[F (k + 1, N)] if k = i

Sj +
∑i−1
n=j Hn

∑k
l=n+1 dl + γ[

∑k−1
n=i Hn

∑k
l=n+1 dl + F (k + 1, N)] if k > i.

Thus,

ak+1 − ak = dk+1(Hj + . . .+Hk) + F (k + 2, N)− F (k + 1, N)

bk+1 − bk = dk+1(Hj + . . .+Hi−1) + γ[dk+1(Hi + . . .+Hk) + F (k + 2, N)− F (k + 1, N)]

If ak+1 > ak, then bk+1 > bk for γ ∈ (0, 1). This implies that when incorporating the discount

factor, the j∗1th term is still smaller than all terms k > j∗1 . Hence, x∗j does not increase when

incorporating a discount factor. 2

Because the failure probabilities determine the effective inventory holding costs and time

discount factors, Lemmas 1-2 lead to the following theorem.

Theorem 3 (The Impact of Failure Risk) If ct+1 + rt+1 > ht for t = 1, 2, . . . , N − 1,

then the optimal production decision x∗j for F (j,N) is non-increasing in αk for any given j

and k.

Proof. As αt increases, the discount factor βt decreases. In addition, as αt increases, Ht

increases because ct+1 + rt+1 > ht for 1 ≤ t < N . So applying Lemma 1 to the holding cost

at period t, and applying Lemma 2 to the discount factors at periods t+ 1, t+ 2, . . . , N yield

the desired result. 2

Theorem 3 implies that when the failure probability increases, it is optimal to produce a

smaller lot for any planning horizon. One question is, does there exist a threshold on αk so

that above which, it is optimal to produce in each period? The following Theorem answers

this question.
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Theorem 4 (The High Failure Risk Property) If βj < (cj + rj+1)/[sj+1/dj+1 + cj+1 +

rj+1 − hj] for all j = 1, 2, . . . , N − 1, then it is optimal to produce in each period from 1 to

N.

Proof. By Theorem 2, it suffices to consider F (j, j + 1) for j = 1, 2, . . . , N − 1.

F (j, j + 1) = min{Sj + F (j + 1, j + 1), Sj +Hj · dj+1} (14)

= min{Sj + Sj+1, Sj +Hj · dj+1}. (15)

Clearly, if Sj+1 < Hj · dj+1, then it is optimal to produce in both periods j and j + 1.

Simple derivation shows that the condition Sj+1 < Hj · dj+1 is equivalent to βj < (cj +

rj+1)/[sj+1/dj+1 + cj+1 + rj+1 − hj]. 2

To interpret Theorem 4, let cj = c and rj = r for all j. If sj+1/dj+1 < hj for all j, it

is optimal to produce at each period even if αj = 0 for all j. Otherwise, if sj+1/dj+1 > hj

for all j, then the condition reduces to βj < 1/[(sj+1/dj+1 − hj)/(c + r) + 1]. Clearly, if

the production cost, the recycle cost or the demand quantity increases, the likelihood of

producing in each period increases.

Finally, we study the impact of failure risk on the optimal expected total cost, C∗.

C∗ =
N−1∑
t=1

h′t · I∗t+1 +
N∑
t=1

δ(x∗t ) · s′t +
N∑
t=1

c′tx
∗
t , (16)

where x∗t and I∗t are the optimal production and inventory decisions.

Proposition 1 C∗ is a piecewise linear concave function for each αt, t = 1, 2, . . . , N . In

addition, C∗(α2
t ) ≤ (1 + αt)C

∗(αt) for each t.

Proof. The proof of the first statement follows that of Zipkin (2000) problem 4.6. Briefly,

for any fixed sequence of production times, we note that h′j, s
′
j and c′j are either independent

of αt or linear functions of αt. Therefore, given the sequence of production times, C∗ is linear

in every αt. C
∗ is concave in αt because C∗ is the minimum cost over all possible sequence

of production times.

To prove the second statement, we consider α1 as a special case. For α2
1, s′1 = s1 and

c′1 = c1,

s′t = st · Πt−1
j=1βj(1 + α1), t > 1
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c′t = ct · Πt−1
j=1βj(1 + α1), t > 1

h′1 = α2
1(r2 − h1) + h1 ≤ [α1(r2 − h1) + h1](1 + α1)

h′t = (αtrt+1 + βtht) · Πt−1
j=1βj(1 + α1), t > 1.

Suppose that the optimal sequence of production times remains the same for both α1 and α2
1.

Then C∗(α2
t ) ≤ (1 + αt)C

∗(αt). Otherwise, the same inequality also holds because C∗(α2
t )

becomes even smaller. The same proof applies to all αt for t > 1. 2

C∗(α) is generally not a monotonic function of αt. Consider the special case of αt → 1

for all t. C∗ effectively reduces to a single-period cost function, which is clearly less than

the multi-period cost function as αt → 0 for all t. Proposition 1 gives a upper bound on

the diminishing rate for C∗ as αt increases. On the other hand, if the optimal sequence of

production times is to produce at period N − 1 to cover demand in both N − 1 and N , then

C∗(αN−1 + ∆) > C∗(αN−1) can hold for sufficiently small ∆ if rN > hN−1.

4.1 Extensions

In this section, we consider two extensions of the model in §4 to incorporate real-world

situations: general concave cost functions and production/storage constraints.

4.1.1 Concave Cost Functions

Let ct(x) be the production cost function, ht(I) be the inventory cost function, and rt(I) be

the destruction/recycle cost function. In line with economies of scale, we assume that ct(x),

ht(I) and rt(I) are concave and increasing.

Under these cost functions, the dynamic program recursion, Eqs. (1)-(3), can be written

as follows,

ft(0, I) = rt(I), 1 ≤ t ≤ N (1)

ft(1, I) = min
{xt≥0, I+xt≥dt}

{ht−1(I) + ct(xt) + αtft+1(0, I + xt − dt) +

βtft+1(1, I + xt − dt)}, t < N (2)

fN(1, I) = min
{xN≥0, I+xN=dN}

{hN−1(I) + cN(xN)}. (3)

Similar to §4, define gt(I) = αt−1

βt−1
rt(I) + ft(1, I) for t = 1, 2, . . . , N , where α0 = 0. Then

gt(I) = min
{xt≥0, I+xt≥dt}

{αt−1

βt−1

rt(I) + ht−1(I) + ct(xt) + βtgt+1(I + xt − dt)}, t < N (4)

gN(I) = min
{xN≥0, I+xN=dN}

{αN−1

βN−1

rN(I) + hN−1(I) + cN(xN)}. (5)
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Discounting cost functions in each period by βt, we define,

c′1(x) = c1(x)

c′t(x) = ct(x) · Πt−1
j=1βj, t > 1

h′1(I) = α1r2(I) + β1h1(I)

h′t(I) = [αtrt+1(I) + βtht(I)] · Πt−1
j=1βj, 1 < t < N.

Finally,

g′t(I) = min
{xt≥0, I+xt≥dt}

{h′t−1(I) + c′t(xt) + g′t+1(I + xt − dt)}, t < N (6)

g′N(I) = min
{xN≥0, I+xN=dN}

{h′N−1(I) + c′N(xN)}. (7)

Note that the effective cost functions, h′t−1(I) and c′t(x), are still concave and increasing.

By Eqs. (6)-(7), the stochastic failure-risk model is equivalent to the deterministic W-W

model with general concave and increasing cost functions. By Zipkin (2000, Sections 4.3.3

and 4.4.6), The “Zero Inventory Property” (Theorem 1) holds here. One can derive the

forward and backward formulations in a similar way as Eqs. (11)-(12), for brevity, we omit

the details. As Veinott (1963) and Aggarwal and Park (1993) point out, the W-W model with

general concave cost functions can be solved using the forward formulation with complexity

O(N2). However, Theorem 2 does not hold because of the general form of the concave

production cost functions.

4.1.2 Additional Constraints

We discuss three types of constraints: the production capacity constraint, the inventory

shelf-life constraint and the storage capacity constraint. The inventory shelf-life constraint

specifies the number of periods that a unit can be carried in inventory, which limits the

number of future periods that can be covered by a production batch. Thus, it is effectively

a production capacity constraint.

It is easily seen that with any subset of these constraints, one can use the same technique

in §4 to reduce the stochastic failure-risk model to an equivalent deterministic W-W model

with adjusted cost parameters and the same set of constraints. For the W-W model with

production capacity, inventory shelf-life and storage capacity constraints, one can find the

solution using well established algorithms, see, e.g., Shaw and Wagelmans (1998).
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Figure 1: Production Costs Excluding & Including the Risk of Failure

5. An Illustrative Example

In this section, we demonstrate that accounting for demand failure when planning a pro-

duction schedule can lead to substantial cost savings over using the Wagner-Whitin model

ignoring the failure risk. To develop insight, we consider a special case of Phase II clinical

trials with stationary data where ct = $75, rt = $25, ht = $5, dt = 250 and st = $50, 000

(∀t ∈ 1, 2, ..., 12). Note that both ht and dt are defined per period where a period equals two

months here. We consider a 12-period (two years) planning horizon and a 7% probability

of failure in each period (i.e. approximately a 42% chance of success for phase II trials).

Further justification of the parameters chosen here is provided in the next section.

For stationary production variable costs, it makes sense to utilize Eqs. (7)-(8), which

ignore the production variable costs except as included in the failure costs. We first consider

the classic W-W model ignoring the risk of failure. Figure 1a shows the production-inventory

costs, excluding the risk of failure, as a function of production schedule. The production

schedules are indicated along the horizontal axis. The left-most bar, shows the anticipated

production costs when producing in every period. In other words, we produce in each period

as needed and thus, no inventory holding costs are incurred. The right-most stacked bar

is just the opposite. When satisfying 12 periods of demand with one production run, a

set-up cost is incurred in the first period and inventory is held to satisfy demand for the

entire planning horizon. This latter plan, producing just once, is both the optimal plan

as calculated by the W-W model and also represents a typical heuristic of pharmaceutical

manufacturers (Shah 2004).

Figure 1b shows the same example, but now the costs account for the 7% probability of
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failure in each period. The optimal plan is now to produce batches which satisfy six periods

of demand. This plan, which minimizes total expected costs, calls for two batches during

the planning horizon as compared with the one batch that is prescribed by the W-W model.

From Figure 1b, one easily sees that using the plan of satisfying all 12 periods of demand

with one production run as prescribed by the W-W model would lead to very high failure

costs. This is a direct consequence from carrying large amounts of inventory that will likely

be wasted due to demand failure. In fact, the optimal schedule generated by the failure-risk

model, which satisfies six periods of demand with each production run, is 28% less costly

than the optimal plan of the W-W model which produces once for twelve periods of demand.

Even with the high fixed costs of this example, failure costs lead to reducing the optimal lot

size and scheduling more frequent production runs.

This example shows that the failure-risk model can generate savings relative to the W-W

model that ignores failure risk by planning for smaller production lot sizes. By Eqs. (7)-(10),

Lemma 1 and Theorem 3, the production frequency under the failure-risk model is driven

by the failure-rate αt, the production costs ct and st, and the inventory holding cost ht. In

the next section, we provide an extensive study on the impact of these parameters.

6. Numerical Study of Potential Savings

In this section, we conduct a comprehensive numerical study to gauge the potential savings

of incorporating failure risk into production planning by solving various environments that

clinical trial manufacturers may face. From our discussions with industry professionals, most

clinical supply managers plan for success despite knowing that failure is both likely and costly.

Our objective is to quantify the savings and identify conditions under which the savings of

incorporating failure into production planning are likely to be substantial. We vary our key

parameters, namely, production costs, holding costs, and failure probability based on our

observations of the industry. Please note that we do not explicitly model destruction costs

because including them in production costs is mathematically equivalent when production

variable costs are constant (see Eqs. 7-10).

In our estimates of production costs, we estimate the variable cost of the active ingredient,

the cost of packaging, the cost of distribution and tracking, and the cost of destruction as a

percentage of the fixed set-up cost of production. In addition, the cost of manufacturing a

placebo drug must also be included in the cost of each treatment. As all of the above costs
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can vary widely based upon the production of active ingredient, packaging requirements,

formulation requirements, and the dosing schedule, we employ a wide range of production

costs. To get the magnitude of our estimates, we look to vaccine production, which, like

clinical trial production, is less standardized and less predictable than typical commercial

drug production (Institute of Medicine 2004). As a rough proxy for clinical trial production,

we expect the total variable cost to fixed set-up cost ratio to be 3:5.2 Assuming that we

obtain this ratio when we are producing 103 treatments per batch, we get variable production

cost per treatment of approximately 0.06% of the setup cost per batch. Using this estimate

as a reference, we employ a wide range for simulating variable production costs per treatment

of between 0.01% and 1.25% of the fixed set-up costs.

Holding costs in the clinical trial supply chain are most likely higher than incurred in

typical pharmaceutical supply chains due to costly tracking and auditing of inventory levels.

In addition, bio-tech molecules often require controlled storage environments which may add

to the cost. For a lower bound on annual holding costs, we take the conservative estimate

of DiMasi et al. (2003) of 11% as the pharmaceutical industry’s real cost-of-capital for

money tied up in inventory. We choose an upper bound of 80% which may better reflect the

potentially high costs of storing and tracking each treatment and the corresponding placebo.

Failure probability in drug development is well documented in the literature. If we

ignore Phase I trials because of the relatively small drug supply that is required, we apply

our analysis to the failure probability that is present in Phase II and Phase III of clinical

trials. Typically, failure is mostly likely to occur in Phase II where the phase II attrition

rate (i.e. probability of failure) is around 58.8%. Phase III performs better with an average

failure rate of 21.5% (DiMasi, 2001). Based on these numbers and noting that the average

length of Phase II and Phase III trials for new chemical entities are 26.0 months and 33.8

months, respectively (DiMasi and Grabowski, 2007), or roughly 2 and 3 years respectively,

we perform our parametric study around these industry averages as shown in Table 4.

The Phase II Simulation: We randomly generated 1,000 scenarios for Phase II clinical

trails with parameters being uniformly distributed over the range of possible values. For each

scenario, two optimal production plans were generated: 1) a Wagner-Whitin production

plan and 2) a failure-risk production plan. Since our goal is to understand under what

circumstances the failure-risk model is likely to outperform the Wagner-Whitin model, we

2From the 2002 Mercer Management study we see that variable costs are 15% of total production costs
and batch costs are 25% of total production costs. Thus, a 3:5 ratio seems appropriate.
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Parameter Average Value Lower Bound Upper Bound
Production Cost Per Treatment

0.63% 0.01% 1.25%
(as % of Set-Up Cost)
Annual Holding Cost

45.5% 11% 80%
(as % of Prod. Cost)

Phase II Failure Probability 59% 45% 73%
Phase III Failure Probability 21.5% 13% 30%

Duration of Phase II Trial 2 Years – –
Duration of Phase III Trial 3 Years – –
Annual Phase II Demand 150 Treatments – –
Annual Phase III Demand 1,200 Treatments – –

Planning Period Two Months – –

Table 4: Parameters for Phase II and Phase III Simulations

calculate, for each scenario, the percentage cost reduction by the failure-risk model relative

to the Wagner-Whitin model. We then plot the percentage savings against various system

parameters to gain insight. The results are shown in the four graphs in Figure 2 with each

diamond on the graphs representing one of the 1,000 scenarios. In 419 of the scenarios, the

failure-risk model led to savings with an average of 11%.

Since the traditional Wagner-Whitin model, like current industry practice, does not incor-

porate demand failure, it is quite intuitive that an increase in the likelihood of failure would

reduce the W-W model’s effectiveness. As shown in Figure 2a, the failure-risk model’s maxi-

mum potential savings over the W-W model does increase in failure probability. Nonetheless,

the presence of many scenarios with 0% savings at all failure probabilities demonstrates that

even high failure probabilities do not always lead to different solutions by the two planning

models. The solutions also depend on other system parameters, such as production costs

and inventory holding cost.

Figure 2b shows the impact of the variable production cost to fixed setup cost ratio in

our Phase II simulation. A threshold appears where the variable production costs, which in

our model include destruction costs, need to be sufficiently high for savings to be realized.

In particular, to achieve savings in our test scenarios, variable production costs must exceed

0.39% of the fixed set-up costs. This is true because when the variable to fixed production

cost ratio is low, the inventory holding cost to fixed setup cost ratio is also low. Thus, in our

test scenarios, both the W-W model and the failure-risk model yield a production frequency

of one. As the variable to fixed cost ratio increases beyond the threshold, the increased
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Figure 2: Expected Reduction in Costs Using F-R Algorithm in Phase II Simulations

cost of failure leads to an increased probability for and magnitude of savings, because the

production frequency under the failure-risk model increases faster than that of the W-W

model.

The impact of the holding costs to fixed setup costs ratio is shown in Figure 2c. It is

interesting to note that in our test scenarios, to achieve any savings, the ratio of holding

costs to set-up costs must be within a range of 0.017% to 0.111%. To see what is behind this

observation, we present the production frequency information in Figure 2d. On the secondary

vertical axis, we present the planned number of setups that each model recommends for

each of the 1,000 scenarios. Combining the information of production frequency and the

percentage savings, we make the following observations about this Phase II simulation:

• Both models call for either one or two setups during the 2-year planning horizon.

• The failure-risk model is most beneficial when holding costs are not too low. When

holding costs are too low, the variable production cost is also very low, so both the
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failure-risk and W-W models will have the same plan and both call for producing just

one big lot.

• The failure-risk model is most beneficial when holding costs are not too high. When

holding costs are too high, both models have the same plan of producing two times

over the planning horizon.

• The range of holding to fixed cost ratio observed above (where savings are possible)

approximately corresponds to the range within which the failure-risk model plans for

two setups while the Wagner-Whitin model calls for one setup. In this range of sce-

narios, the potential benefits of the failure-risk model increase with increasing holding

costs. This is a simple reflection of the larger average inventory level, some of which is

more likely to be wasted, under the plan of the W-W model.

Phase III Simulation: Phase III clinical trials differ from Phase II trials due to their

longer duration, higher demand for treatments, but lower probability of failure. Our Phase

III simulation adjusts these parameters accordingly. One result of these changes is that out

of the 1,000 scenarios investigated, savings were achieved in 55.4% of the trials. This is more

frequent than the 41.9% frequency in which savings were achieved in the Phase II simulation.

However, Phase III savings, when they occurred, averaged about 2.85% which is significantly

less than the average savings of 11.0% observed in Phase II. The first difference is due to the

longer planning horizon, because with more periods, it is more likely that the two models

yield different solutions. The second difference is largely due to the lower failure rate.

Similar to our Phase II investigation, we look to a graphical representation of the per-

centage savings against certain key parameters of the model. These graphs are shown in

Figure 3. As seen in Phase II, the failure-risk model in Phase III has larger potential bene-

fits as the probability of failure increases (see Figure 3a). However, in contrast to our Phase

II results, Phase III has some noteworthy differences in regards to the potential for savings

against other parameters.

First, as shown in Figure 3b, the larger demand for treatments and longer planning

horizon substantially reduce the minimum production cost threshold. We see that savings

are achievable at almost any level of production cost. We also see a saw-blade pattern in the

diagram of these costs which is best explained by the data shown in Table 5. We see that the

maximum potential savings are achieved when the Failure Risk (F-R) algorithm plans two
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Figure 3: Expected Reduction in Costs Using F-R Algorithm in Phase III Simulations
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Planned Number of
Setups Using W-W
Algorithm

Planned Number of
Setups Using F-R
Algorithm

Maximum % Sav-
ings Observed

1 2 26.7%

2
3 12.1%
4 16.7%

3 4 5.5%

4
4 0.2%
5 3.1%
6 4.5%

5
5 0.1%
6 2.3%

Table 5: Maximum Observed % Savings Versus Number of Setups During Phase III Simu-
lation

setups while the W-W model plans only one setup. While production costs are not directly

responsible for the drop in savings that we see when production costs reach about 0.47% of

setup costs, they directly affect holding costs, which have been defined as a percentage of

production costs. At production costs of about 0.47%, holding costs are driven sufficiently

high such that the W-W model will perform a minimum of at least two setups over the

planning horizon. As seen in Table 5, once the W-W model plans for more than one setup,

the maximum potential savings drops significantly.

In the Phase II simulation, we saw that holding costs were required to be within a

certain range for savings to occur. From our Phase III chart of holding costs (Figure 3c),

we see several ranges of holding costs that have different effects on the savings achieved.

In Figure 3d, we overlay the frequency of production that the two models call for on the

second vertical axis. As we increase the holding costs, we notice a transition in the failure-

risk production plans from one of less frequent setups to one of more frequent setups. This

transition is then followed by a similar transition of the W-W plan to one of more frequent

setups. As shown in both Table 5 and Figure 3d, savings are achieved every time the failure-

risk model makes the jump to a production plan that has more frequent setups than the

W-W model. Savings then return to zero once the W-W model transitions to the same

schedule that the failure-risk model calls for.

Industry Notes: Mapping the results of our analysis to industry, we expect the failure-risk

model to have the most significant impact for drugs that have a high probability of failure,
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sufficiently high production costs and relatively low inventory holding costs. Since it is hard

to characterize holding and production costs for a certain clinical trial environment, we com-

ment only on the probability of failure that is seen during clinical trials. In pharmaceutical

and bio-tech industries, we see below-average success probabilities for drugs in the follow-

ing therapeutic classes: antineoplastic, cardiovascular, central nervous system, immunologic,

and respiratory medicines (DiMasi 2001, DiMasi et al. 2004).

7. Conclusion

This paper applies operations management models to clinical trial drug supply chains and

demonstrates their potential impact. Specifically, we consider a class of dynamic economic

lot size models under the risk of demand failure – the failure-risk models. We show that the

stochastic failure-risk models can be transformed to corresponding W-W models where only

the cost parameters need to be adjusted according to the failure risk and destruction cost.

Therefore, many of the classic results for W-W models directly apply here. Most interestingly,

the planning horizon theorem (Theorem 2) indicates that learning during clinical trials does

not affect supply decisions under certain conditions. We also show that the failure risk

induces more frequent production by changing the effective inventory holding costs and time

discount factors. Our numerical study (based on our observation of the industry) reveals that

while the failure-risk model does not always call for a production plan different from the W-

W model, certain combinations of holding, production, and setup costs lead to substantive

savings.

The model and insights developed in this paper indicate ways to improve the current

practice of clinical trial supply chains. Often, pharmaceutical/bio-tech companies employ

different teams to plan for clinical trial activities and clinical drug supplies, where each team

reports to its own Vice President. There is little connection between the teams beyond

the direct supply and demand relationship, and the supply team typically plans for success

(i.e., ignores failure in planning). This paper shows that proper communication between the

teams about the failure probabilities and properly accounting for failures in drug supplies

can help the supply team substantially reduce drug manufacturing cost without harming

service. We should point out that the models and results developed here also apply to other

business practices where demand may cease to exist at a uncertain future date.

The huge potential of integrating clinical trial activities and the drug supply chain has
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recently been recognized both in academia and in industry. While there is ample work to

be done, we suggest the following specific research directions: (1) An Empirical Study: This

paper provides some empirical evidence of the magnitude of spending needed to support

clinical trial supply chains. A more comprehensive empirical study is needed to verify the

financial significance and determine the impacting factors. (2) Multi-Product/Multi-echelon

Optimization: Drug supply chains often consist of multiple manufacturing steps that are

done in geographically dispersed facilities, e.g., the active pharmaceutical ingredients (API)

manufacturing, formulation and packaging (Bernstein and Hamrell 2000). Furthermore,

companies may have multiple investigational drugs in clinical trials simultaneously. Thus, it

is important to generalize the model to coordinate multiple drugs in multi-echelon clinical

trial supply chains. (3) Outsourcing Contracts: While many large pharmaceutical companies

produce investigational drugs in-house, most smaller companies outsource production to 3rd

party manufacturers. Given the potential failure risk, the design of the outsourcing contracts

can be an interesting topic.
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