
Planning for Demand Failure:

A Dynamic Lot Size Model for Clinical Trial Supply Chains

Adam J. Fleischhackera, Yao Zhaob

aDepartment of Business Administration, University of Delaware, Newark, DE 19716, USA

bDepartment of Supply Chain Management & Marketing Sciences, Rutgers Business School – Newark and New Brunswick, 1

Washington Park, Newark, NJ 07102, USA

This paper examines the optimal production lot size decisions for clinical trial supply chains.
One unique aspect of clinical trial supply chains is the risk of failure, meaning that the
investigational drug is proven unsafe or ineffective during human testing and the trial is
halted. Upon failure, any unused inventory is essentially wasted and needs to be destroyed.
To avoid waste, manufacturers could produce small lot sizes. However, high production setup
costs lead manufacturers to opt for large lot sizes and few setups. To optimally balance this
tradeoff of waste and destruction versus production inefficiency, this paper generalizes the
Wagner-Whitin model (W-W model) to incorporate the risk of failure. We show that this
stochastic model, referred to as the failure-risk model, is equivalent to the deterministic W-W
model if one adjusts the cost parameters properly to reflect failure and destruction costs. We
find that increasing failure rates lead to reduced lot sizes and that properly incorporating
the risk of failure into clinical trial drug production can lead to substantial cost savings as
compared to the W-W model without the properly adjusted parameters.

1. Introduction

For every new drug that reaches a pharmacy’s shelf, roughly 5,000 to 10,000 other po-

tential medicines have failed to achieve commercialization (Pharmaceutical Research and

Manufacturers of America 2009). For a pharmaceutical or bio-tech company attempting

to create a new medicine or treatment, failure is not a surprise, but rather an event to be

planned for. In this paper, we analyze the impact of failure during clinical trials on the

production-inventory decisions for investigational drugs and discover that an extension of

the Wagner-Whitin model (Wagner and Whitin 1958) can greatly improve efficiency in the

clinical trial supply chain.

One of the most important hurdles prior to the U.S. Food and Drug Administration’s

(FDA) approval of a new drug is the testing of a drug candidate in clinical trials. Three

phases of clinical trials are usually required to test both safety and efficacy of a potential

treatment in human subjects. Typically, Phase I involves 50 to 100 healthy individuals,

Phase II recruits a few hundred potential patients, and Phase III seeks to test the drug

candidate in a few thousand patients. While we may know how many patients are needed

in each phase of the clinical trial, there is an inherent uncertainty associated with each trial:
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the risk of failure. Indeed, only 21.5% of drug candidates entering clinical trials actually

achieve FDA approval (DiMasi et al. 2003). Many of these drug candidates that fail to pass

through the clinical trial hurdle are well documented in the financial press. Below is just one

example from the New York Times (Berenson 2006):

The news came to Pfizer’s chief scientist, Dr. John L. LaMattina, as he was

showering at 7 a.m. Saturday: the company’s most promising experimental drug,

intended to treat heart disease, actually caused an increase in deaths and heart

problems. Eighty-two people had died so far in a clinical trial, versus 51 people

in the same trial who had not taken it.

Within hours, Pfizer, the world’s largest drug maker, told more than 100 trial

investigators to stop giving patients the drug, called torcetrapib. Shortly after

9 p.m. Saturday, Pfizer announced that it had pulled the plug on the medicine

entirely, turning the company’s nearly $1 billion investment in it into a total loss.

The small success rate of clinical trials is painful to a pharmaceutical company’s balance

sheet because of the enormous amounts of time, labor, and materials required to perform

a clinical trial. On average, 37% of the $100 billion R&D spending by pharmaceutical

companies is spent on the clinical trial process (Cutting Edge Information 2004, Thomson

CenterWatch 2007). Annual supply chain spending for drugs under clinical trials can be

substantial, e.g., accounting for 20% or more of a company’s research and development

spending.1 For just one drug candidate, a company can spend millions of dollars every

quarter to produce supplies for just one clinical trial. When failure in a clinical trial occurs,

every dollar spent on manufacturing, packaging, and distribution of unused clinical trial

supplies is wasted and in most cases, unused material must be returned to a proper disposal

facility for destruction (English and Ma, 2007). For example, Cotherix Inc., estimated

$126,000 in destruction costs for an obsolete drug that was valued at $1.5 million (Cotherix

2006).

It would be unfair of us to label all post-failure drug supply as waste. Inventory is needed

to ensure that as patients are recruited to participate in the study, drug supply is available.

Any delays in this phase of testing become one less day of patent protection available to

the drug. According to Clemento (1999), every extra day of patent availability is worth $1

million for a typical drug. Since patient recruitment is the typical bottleneck in conducting

clinical trials, a shortage of clinical drug is considered an unacceptable delay and our model

1As an example, 21.3% of Allos Theraputics R&D spending from 1995 - 2006 went towards clinical trial
manufacturing-related activities (Allos Therapeutics Inc. 1999-2007).
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assumes no backlogging of demand. That being said, one would usually be economically

foolish to produce enough supply to support all three phases of a clinical trial at once.

Production of investigational drugs is typically characterized by high costs (both fixed

and variable) due to the low demand volume, low yield and the premature manufacturing

process. In addition, at each step in the synthesis of the chemical compounds, rigorous

quality control procedures are required to ensure that investigational drugs “are consistently

produced and controlled to the quality standards appropriate to their intended use” (George

2005). Often, active ingredient production for a drug candidate is a costly process and may

require unique manufacturing equipment and processes. Thus, both the fixed and variable

production costs tend to be much higher for investigational drugs than approved drugs which

have been scaled up for mass production.

In this paper, we present a mathematical model for production planning to balance the

two opposing forces of 1) high fixed production costs pushing for large lot sizes and 2) high

failure costs which favor smaller lot sizes. High fixed costs for production, in the form of

both time and money, lend support to producing large lot sizes. Alternatively, the high risk

of failure, the high production variable cost and inventory carrying cost argue for smaller

lot sizes. Smaller lot sizes would avoid wasting unused clinical drug supplies as well as

the significant cost of destroying the unused material, but can result in high costs due to

multiple production setups and more numerous quality control activities. We accommodate

this environment by generalizing the Wagner-Whitin (W-W) model (Wagner and Whitin,

1958) to incorporate a stochastic component, namely, the risk of failure. We will refer to

this model as the failure-risk model. By investigating the failure-risk model, we are able to

make the following contributions:

• We demonstrate how every failure-risk model is equivalent to a corresponding deter-

ministic W-W model if one adjusts the cost parameters properly to reflect failure risk

and destruction costs, so many classic results of the W-W model still apply. Most

interestingly, the planning horizon theorem indicates that in the failure-risk model,

updating failure probabilities as the clinical trial proceeds does not affect the optimal

supply decisions under certain conditions.

• We conduct a comprehensive numerical study using various environments that clinical

trial manufacturers may face. We show that the failure-risk model can lead to sub-

stantial costs savings as compared to using the W-W model which ignores the risk of

failure.

The remainder of this paper is organized as follows. We review the related literature in

§2. The model and analysis are presented in §3, and their extensions are discussed in §4. The
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potential benefits of properly accounting for failure are shown in an illustrative example in

§5. A more thorough numerical study to test the effectiveness of the model under real-world

scenarios is performed in §6 with implications within industry discussed in §7. Finally, we

summarize the paper and discuss future research directions in §8.

2. Literature Review

Because of the interdisciplinary nature of this work, we shall first review literature that relates

the disciplines of production planning and clinical research. Then, we highlight papers on

dynamic economic lot size models and stochastic inventory models. Finally, we turn our

attention to literature on research and development (R&D) supply chains.

Qualitative investigations of drug supply decisions made within the clinical trial pro-

cess are found in the medical and pharmaceutical literature. For example, George (2005)

presents common issues encountered during clinical trial supply management and proposes

coordination and flexibility as keys to success. A more thorough description of clinical ma-

terial manufacturing practices is provided by Bernstein and Hamrell (2000). In their paper,

the authors advocate coordinating the disciplines of manufacturing and clinical programs to

achieve efficient execution of drug development. Their study is conceptual and qualitative;

in contrast, our approach leverages mathematical modeling and numerical studies to yield

insights.

Quantitative research that deals with uncertainties specific to clinical trials and their

production decisions has also been conducted. Shah (2004) provides a survey for this line

of research. Colvin and Maravelias (2008) highlights more recent advances and presents a

stochastic programming approach to scheduling clinical trials for a portfolio of drug candi-

dates that share limited resources. Notable extensions of this work to accommodate out-

sourcing possibilities (Colvin and Maravelias, 2009) and more efficient algorithms (Colvin

and Maravelias, 2010) have been studied. Gatica, et al. (2003) and Levis and Papageorgiou

(2004) also leverage stochastic programming approaches to simultaneously determine the

optimal capacity and production decisions for multiple clinical trial drugs. In each case, the

underlying problem is a large-scale multi-stage stochastic program with integer and contin-

uous variables. In addition to stochastic programming approaches, simulation has also been

used to deal with production scheduling issues given the uncertainty in outcome of clinical

trials for a portfolio of drugs (see for example Subramanian, 2003 and Blau, et al, 2004).

This paper differs from the previous quantitative work on clinical trial supply chains by

its focus. We study a simpler model with only one drug candidate and aim at deriving

structural results which provide managerial insights and enable efficient solution algorithms.
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In contrast to scheduling production in a resource-constrained environment for a portfolio of

drug candidates (see relevant review in Verderame, 2010), the heart of our model is balancing

production efficiency for a single product versus the potential for waste (as a result of a

clinical trial failing) in an environment where an expensive end product is often destroyed as

opposed to consumed. Given this, our work is also closely related to the dynamic economic

lot size (DEL) models and stochastic inventory models studied in the operations management

literature.

There is a long lasting interest and huge body of literature on DEL models for production-

inventory systems with time-varying but known demand. Wagner and Whitin (1958) pro-

poses the basic model (referred to as the W-W model hereafter) and which was named as

one of the “Ten Most Influential Titles of Management Science’s First 50 Years” (Hopp,

2004). The paper characterizes several important system properties and develops a polyno-

mial solution algorithm. Since then, many extensions and variations of this model have been

studied. For more efficient solution algorithms, see Aggarwal and Park (1993), Federgruen

and Tzur (1991) and Wagelmans, et al. (1992). For DEL models with various capacity

constraints, see, e.g., Florian, et al. (1980) and Shaw and Wagelmans (1998). For more

general cost functions, see Eppen, et al. (1969), Veinott (1963) and Zangwill (1969). More

recently, Chu et al. (2005) study a lot sizing problem with general economies of scale cost

functions. Realizing the problem is NP-hard, they develop approximation solutions and per-

form a worst-case analysis. Zipkin (2000) provides a thorough review of models and solution

techniques on this topic.

This paper extends the classical W-W model to include the risk of failure. This feature

transforms the W-W model into a stochastic production-inventory model. The most related

stochastic inventory models to this paper are those on single-stage systems with world-driven

demand. Iglehart and Karlin (1962) analyzes optimal inventory ordering policies for non-

stationary stochastic demand. Johnson and Thompson (1975) models demand as mixed

autoregressive-moving average time series. Song and Zipkin (1993) and Sethi and Cheng

(1997) characterize the optimal inventory control policies for various inventory systems with

Markov-modulated demand. Comprehensive reviews are provided by Zipkin (2000) and

Porteus (2002).

The failure-risk model in this paper can be regarded as a special case of the models with

Markov-modulated demand. Here demand in each period is a Bernoulli random variable, and

if demand ever becomes zero, it stays zero for the rest of the planning horizon. While it is

known that under certain regularity conditions, the state-dependent (s, S) policy is optimal

for such systems with fixed production costs, the special structure of the demand process in

a clinical trial supply chain allows us to develop much stronger results (e.g., equivalence to
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W-W model) and new insights (e.g., impact of failure risk).

The demand structure in this paper is similar to those analyzed in the inventory models

with “sudden death obsolescence”. Brown, et al. (1964) introduces the model under periodic-

review where demand may cease at an uncertain future date. A Bayesian procedure is

employed to update demand distribution and a dynamic program is proposed to find the

optimal solution. Pierskalla (1969) considers a model with stochastic demand and convex

cost functions, and shows that the base-stock policy is optimal. Song and Zipkin (1996)

generalizes the model to treat Markov-modulated demand. Katok, et al. (2001) considers

a model similar to ours but with random demand. To derive simple heuristic solutions, the

authors analyzed their model with deterministic demand and found that it is a variant of

the W-W model. Both this paper and a similar study of obsolescence by Jain and Silver

(1994) prove only the zero-inventory property for the deterministic model and derive heuristic

solutions to the stochastic problem based on this property. Katok and Xu (2001) provides

more details on the mathematical model and technical development which expand the Katok,

et al. (2001) paper. While we study a similar model (with some differences on the cost

structure) as the previous three papers, our paper takes the analysis of the deterministic

demand case further by proving the full equivalence of production planning in a demand

failure environment to a re-parameterized Wagner-Whitin model. We also leverage this

equivalence to characterize properties of the optimal solution. Lastly, a few authors have

studied sudden death obsolescence models in continuous time with deterministic demand

and developed EOQ types of solutions, see, David, et al (1997) and references therein.

To overcome the complexities of existing stochastic obsolescence models, we study failure

in the supply chain by focusing on a particular type of demand uncertainty that we term

demand failure. Demand failure is defined as the sudden ceasing of a deterministic non-

stationary demand stream. While the point of failure is not known, we do assume that failure

probabilities in each period are known (see DiMasi 2001). By employing the assumption of

demand failure, we are able to yield both clean and insightful results. As Song and Zipkin

(1996) note in their study of obsolescence, which assumes a stochastic demand stream with

random lifetime, clean results are not forthcoming in fully stochastic models:

Generally, we find that obsolescence does (or should) have a substantial impact

in the way inventories are managed. The nature of these effects, moreover, is

fairly intricate. It appears that obsolescence cannot be captured in a simpler

model through parameter adjustments.

Leveraging the deterministic demand assumption, we can formulate the failure-risk model

into the simpler W-W model where the adjusted cost parameters incorporate the costs of fail-

ure. This result connects the failure-risk model with the vast literature of the W-W models,
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and thus, many results of the latter directly apply here. In addition, adjusting parameters

of the W-W model is a simple way to include failure into production planning and thus, is

more likely to be implemented than more complex obsolescence models. In conversations

with industry professionals, they often comment that complicated models may prove too so-

phisticated as their supply planners often have strong pharmaceutical backgrounds, but not

equally strong quantitative skill sets. Lastly, we believe the demand failure assumption to be

tenable to practitioners who can often, but certainly not always, accurately predict demand

(assuming the trial’s success). According to a recent survey of clinical supply managers

conducted by Bearing Point, 75% of Phase I and roughly 50% of Phases II-III SKU-level

clinical supply forecasts are within 10% of actual demand (Kumar, 2008).

Our work is also related to the literature on R&D supply chains. Most of this literature

focuses on supply chain design to support a product entering the market for the first time.

However, much less attention has been devoted to the actual development supply chain

(Krishnan and Ulrich 2001, Pisano 1997). At a pharmaceutical company, both the supply

chain design for production ramp-up and the material supply during the development stage

are important decisions. The focus of this paper is on creating a model for the latter. More

recently, there is a growing interest in combining R&D and supply chain decisions. Hult and

Swan (2003) provides a conceptual framework to analyze the interdependencies of product

development and supply chain activities. Specific to the pharmaceutical world, Pisano (1997)

presents strategic guidelines for effectively linking manufacturing strategy with the highly

uncertain world of drug candidate development.

3. The Model

Consider an investigational drug in a clinical trial over a finite time horizon with periods

ranging from t = 1, 2, . . . , N . We assume that demand is known for the drug in all periods

(see justifications in §2). Demand and costs in each period are nonnegative. If the trial

succeeds at the end of period t, we make production decisions and move to next period.

Otherwise, we stop and all remaining inventory is wasted and is recycled or destroyed. The

known demand must be satisfied and no backorders are allowed. Because the production

cycle time is often much shorter than a clinical trial duration, we assume zero lead-time for

production.

The system has the following state variables at the beginning of period t:

• I: inventory level.

• θ: system status indicator, success (θ = 1), failure (θ = 0).
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The system has the following parameters,

• ht: holding cost for inventory carried from period t to period t+ 1.

• st: fixed production cost at period t if a production is initiated.

• αt: failure probability at the end of period t.

• βt ≡ 1− αt: success probability at the end of period t.

• dt: demand in period t.

• ct: production variable cost at period t.

• rt: recycle/destruction cost at period t for any inventory un-used.

The estimates of failure probabilities in various therapeutic classes are readily available

from the literature (see Gatica et al., 2003, DiMasi et al., 2010). It is possible that the failure

probability of a trial does not depend on the results of previous trials if they are testing on

different criteria, e.g., efficacy vs. safety. In this case, αt is the unconditional probability of

failure in the trial. It is also possible that the failure probabilities depend on the results of

previous tests. For instance, during multiple trials for effectiveness, success in early trials

can provide a strong indicator for success in on-going trials. In this case, αt is effectively the

failure probability conditioning on successes to date. Likewise, estimates of demand, dt, also

assume success to date as any failure in the trial results in the halting of a investigational

drug’s use.

The action at period t is to produce xt ≥ 0. Let initial inventory level I0 = 0. Define

ft(θ, I) to be the minimum expected cost for period t through N with initial inventory I and

system status θ. Let δ(xt) be the indicator function of xt > 0, and h0 = 0. The dynamic

programming recursion can be written as follows,

ft(0, I) = rtI, 1 ≤ t ≤ N (3.1)

ft(1, I) = min
{xt≥0, I+xt≥dt}

{ht−1I + δ(xt)st + ctxt + αtft+1(0, I + xt − dt) +

βtft+1(1, I + xt − dt)}, t = 1, 2, . . . , N − 1 (3.2)

fN(1, I) = min
{xN≥0, I+xN=dN}

{hN−1I + δ(xN)sN + cNxN}. (3.3)

Combining Eqs. (3.1)-(3.2), and noting that I +xt− dt is the inventory at the beginning

of period t+ 1, we can make the following transformation,

gt(I) =
αt−1rt
βt−1

I + ft(1, I),∀t = 1, 2, . . . , N, (3.4)
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where α0 = 0. Then, gt(I) satisfies the following recursive equations,

gt(I) = min
{xt≥0, I+xt≥dt}

{αt−1rt + βt−1ht−1
βt−1

I + δ(xt)st + ctxt + βtgt+1(I + xt − dt)},

t = 1, 2, . . . , N − 1

gN(I) = min
{xN≥0, I+xN=dN}

{αN−1rN + βN−1hN−1
βN−1

I + δ(xN)sN + cNxN}.

Note that this formulation is identical to the W-W model with modified inventory holding

cost and a time discount factor βt at period t. One can adjust the cost parameters at each

period, and by doing so, the dynamic program reduces to the Wagner-Whitin model with

variable production costs. Let h′0 = 0, and define the effective production costs and holding

costs as follows,

s′1 = s1

s′t = st · Πt−1
j=1βj, 1 < t ≤ N

c′1 = c1

c′t = ct · Πt−1
j=1βj, 1 < t ≤ N

h′1 = α1r2 + β1h1

h′t = (αtrt+1 + βtht) · Πt−1
j=1βj, 1 < t < N.

Hence,

g′t(I) = min
{xt≥0, I+xt≥dt}

{h′t−1I + δ(xt)s
′
t + c′txt + g′t+1(I + xt − dt)}, t = 1, 2, . . . , N − 1(3.5)

g′N(I) = min
{xN≥0, I+xN=dN}

{h′N−1I + δ(xN)s′N + c′NxN}. (3.6)

Eqs. (3.5)-(3.6) show that one can transform the stochastic failure-risk model to an equiv-

alent deterministic W-W model with properly adjusted production and inventory holding

costs. Note that the adjusted (or effective) inventory holding cost is the weighted average

of the destruction cost and the regular inventory holding cost which is discounted by the

success probabilities to date.

Because all cost parameters defined in Eqs. (3.5)-(3.6) are nonnegative, by Zipkin (2000,

§4.3.3), the “zero-inventory property” holds. Specifically, let It be initial inventory level at

period t, and we can formally state the “zero-inventory property”.

Theorem 1 (The Zero Inventory Property) For the dynamic program defined in Eqs.

(3.1)-(3.3), the following claims hold.

1. For each period t, It · xt = 0.
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2. xt = 0 or xt =
∑k

j=t dj.

3. If dt is satisfied by some xτ for τ < t, then dj, j = τ + 1, . . . , t− 1 is also satisfied by

xτ .

4. Given that It = 0 for period t, it is optimal to consider periods 1 through t − 1 inde-

pendent of other periods.

For ease of analysis, we further transform the dynamic program into the W-W model

without variable production costs. Note that c′txt = c′t(I + xt − dt) − c′t(I − dt) for t =

1, 2, . . . , N .

g′t(I) = min
{xt≥0, I+xt≥dt}

{(h′t−1 − c′t)I + δ(xt)s
′
t + c′t(I + xt − dt) + c′tdt + g′t+1(I + xt − dt)},

t = 1, 2, . . . , N − 1

g′N(I) = min
{xN≥0, I+xN=dN}

{(h′N−1 − c′N)I + δ(xN)s′N + c′NdN}.

To remove the constants ctdt and combine terms which are functions of I + xt − dt, we

define,

Gt(I) = c′t−1I + g′t(I)− [c′tdt +
N∑

n=t+1

(c′ndn · Πn−1
j=t βj)], t = 1, 2, . . . , N − 1

GN(I) = c′N−1I + g′N(I)− c′NdN ,

where c′0 = 0. The recursion for Gt is as follows,

Gt(I) = min
{xt≥0, I+xt≥dt}

{Ht−1I + δ(xt)St +Gt+1(I + xt − dt)}, t = 1, 2, . . . , N − 1 (3.7)

GN(I) = min
{xN≥0, I+xN=dN}

{HN−1I + δ(xN)SN}, (3.8)

where

St = s′t, 1 ≤ t ≤ N

H1 = c1 − c2 + α1(c2 + r2) + β1h1 (3.9)

Ht = [ct − ct+1 + αt(ct+1 + rt+1) + βtht] · Πt−1
j=1βj, 1 < t < N. (3.10)

Note that Ht consists of two parts: the first part is the difference between production costs

in two successive periods; the second part is the weighted average of the total loss due to

failure (including the production and destruction costs, referred to as the failure cost) and

the regular inventory holding cost.

10



Define F (j, i) to be the minimum cost to cover all demands in periods j, j+ 1, . . . , i with

Ij = 0 and Ii+1 = 0 if j ≤ i; let F (j, i) be zero otherwise. The forward formulation to

compute F (j, i) is as follows.

F (j, i) = min{ min
j≤k<i

{Sk +
i−1∑
n=k

Hn

i∑
l=n+1

dl + F (j, k− 1)}, Si + F (j, i− 1) }, j < i. (3.11)

The backward formulation works as follows,

F (j, i) = min{ Sj + F (j + 1, i), min
j<k≤i

{Sj +
k−1∑
n=j

Hn

k∑
l=n+1

dl + F (k+ 1, i)} }, j < i. (3.12)

To compute the optimal solution and optimal cost functions, one can use the well known

algorithms of Wagner and Whitin (1958), Federgruen and Tzur (1991) and Wagelmans, et

al. (1992).

Because the failure probability αt only affects the holding costs Hj for j ≥ t, it follows

from the forward formulation, Eq. (3.11), that the Planning horizon Theorem of Wagner-

Whitin can be applied and interpreted in our model as follows.

Theorem 2 (The Planning Horizon Theorem) If Ht ≥ 0 for all 1 ≤ t < N , then

1. If the optimal solution for F (1, t) in Eq. (3.11) is t∗ ≤ t, then to solve F (1, τ) with

τ > t, one only needs to consider F (t∗, τ). In other words, if it is optimal to incur a

set-up cost at period t∗ when periods 1 through t are considered alone, then it is optimal

to incur a set-up cost at period t∗ in any τ -period model.

2. The optimal solution for periods 1 to t∗ does not change even if we can update αj for

j ≥ t∗ along with time.

If Ht < 0, Theorem 2 may not hold, see Eppen, et al. (1969) for more discussion. Due to

the high destruction cost and failure risk, Ht will be positive in clinical trial supply chains.

Hence, we assume Ht ≥ 0 for all 1 ≤ t < N for the rest of the paper.

To avoid the costs of failure (i.e. wasted drug and destruction costs), more frequent

production of smaller batches can be planned. At some point, failure becomes so likely, that

production in every period becomes a prudent decision. By the following Theorem, we can

mathematically characterize a threshold on our failure porbability, αk, so that above which,

it is optimal to produce in each period.

Theorem 3 (The High Failure Risk Property) If βj < (cj + rj+1)/[sj+1/dj+1 + cj+1 +

rj+1 − hj] for all j = 1, 2, . . . , N − 1, then it is optimal to produce in each period from 1 to

N.
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Proof. By Theorem 2, it suffices to consider F (j, j + 1) for j = 1, 2, . . . , N − 1.

F (j, j + 1) = min{Sj + F (j + 1, j + 1), Sj +Hj · dj+1} (3.13)

= min{Sj + Sj+1, Sj +Hj · dj+1}. (3.14)

If Sj+1 < Hj ·dj+1, then it is optimal to produce in both periods j and j+1. Simple derivation

shows that the condition Sj+1 < Hj ·dj+1 is equivalent to βj < (cj +rj+1)/[sj+1/dj+1 +cj+1 +

rj+1 − hj]. 2

To interpret Theorem 3, let cj = c and rj = r for all j. If sj+1/dj+1 < hj for all j, it

is optimal to produce at each period even if αj = 0 for all j. Otherwise, if sj+1/dj+1 > hj

for all j, then the condition reduces to βj < 1/[(sj+1/dj+1 − hj)/(c + r) + 1]. Clearly, if

the production cost, the recycle cost or the demand quantity increases, the likelihood of

producing in each period increases.

Finally, we study the impact of failure risk on the optimal expected total cost, C∗.

C∗ =
N−1∑
t=1

h′t · I∗t+1 +
N∑
t=1

δ(x∗t ) · s′t +
N∑
t=1

c′tx
∗
t , (3.15)

where x∗t and I∗t are the optimal production and inventory decisions.

Proposition 1 C∗ is a piecewise linear concave function for each αt, t = 1, 2, . . . , N . In

addition, C∗(α2
t ) ≤ (1 + αt)C

∗(αt) for each t.

Proof. See Appendix. 2

C∗ is generally not a monotonic function of αt. Consider the special case of αt → 1

for all t. C∗ effectively reduces to a single-period cost function, which is clearly less than

the multi-period cost function as αt → 0 for all t. Proposition 1 gives a upper bound on

the diminishing rate for C∗ as αt increases. On the other hand, if the optimal sequence of

production times is to produce at period N − 1 to cover demand in both N − 1 and N , then

C∗(αN−1 + ∆) > C∗(αN−1) can hold for sufficiently small ∆ if rN > hN−1.

4. Extensions

In this section, we consider two extensions of the model in §3 to incorporate real-world

situations: general concave cost functions and production/storage constraints.
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4.1 Concave Cost Functions

Let ct(x) be the production cost function, ht(I) be the inventory cost function, and rt(I) be

the destruction/recycle cost function. In line with economies of scale, we assume that ct(x),

ht(I) and rt(I) are concave and increasing.

Under these cost functions, the dynamic program recursion, Eqs. (3.1)-(3.3), can be

written as follows,

ft(0, I) = rt(I), 1 ≤ t ≤ N (4.1)

ft(1, I) = min
{xt≥0, I+xt≥dt}

{ht−1(I) + ct(xt) + αtft+1(0, I + xt − dt) +

βtft+1(1, I + xt − dt)}, t < N (4.2)

fN(1, I) = min
{xN≥0, I+xN=dN}

{hN−1(I) + cN(xN)}. (4.3)

Similar to §3, define gt(I) = αt−1

βt−1
rt(I) + ft(1, I) for t = 1, 2, . . . , N , where α0 = 0. Then

gt(I) = min
{xt≥0, I+xt≥dt}

{αt−1
βt−1

rt(I) + ht−1(I) + ct(xt) + βtgt+1(I + xt − dt)}, t < N (4.4)

gN(I) = min
{xN≥0, I+xN=dN}

{αN−1
βN−1

rN(I) + hN−1(I) + cN(xN)}. (4.5)

Discounting cost functions in each period by βt, we define,

c′1(x) = c1(x)

c′t(x) = ct(x) · Πt−1
j=1βj, t > 1

h′1(I) = α1r2(I) + β1h1(I)

h′t(I) = [αtrt+1(I) + βtht(I)] · Πt−1
j=1βj, 1 < t < N.

Finally,

g′t(I) = min
{xt≥0, I+xt≥dt}

{h′t−1(I) + c′t(xt) + g′t+1(I + xt − dt)}, t < N (4.6)

g′N(I) = min
{xN≥0, I+xN=dN}

{h′N−1(I) + c′N(xN)}. (4.7)

Note that the effective cost functions, h′t−1(I) and c′t(x), are still concave and increasing.

By Eqs. (4.6)-(4.7), the stochastic failure-risk model is equivalent to the deterministic W-W

model with general concave and increasing cost functions. By Zipkin (2000, Sections 4.3.3

and 4.4.6), the “Zero Inventory Property” (Theorem 1) still holds here. One can derive the

forward and backward formulations in a similar way as Eqs. (3.11)-(3.12), for brevity, we

omit the details. As Veinott (1963) and Aggarwal and Park (1993) point out, the W-W

model with general concave cost functions can be solved using the forward formulation with

complexity O(N2). However, Theorem 2 does not hold because of the general form of the

concave production cost functions.

13



4.2 Additional Constraints

We discuss three types of constraints: the production capacity constraint, the inventory

shelf-life constraint and the storage capacity constraint. The inventory shelf-life constraint

specifies the number of periods that a unit can be carried in inventory, which limits the

number of future periods that can be covered by a production batch. Thus, it is effectively

a production capacity constraint. In fact, with any subset of these constraints, one can

use the same technique as in §3 to reduce the stochastic failure-risk model to an equivalent

deterministic W-W model with adjusted cost parameters and the same set of constraints.

For the W-W model with production capacity, inventory shelf-life, and/or storage capacity

constraints, one can find the solution using well established algorithms, see, e.g., Shaw and

Wagelmans (1998).

5. An Illustrative Example

In this section, we demonstrate that accounting for demand failure when planning a pro-

duction schedule can lead to substantial cost savings over using the Wagner-Whitin model

ignoring the failure risk. To develop insight, we consider a special case of Phase II clinical

trials with stationary data where ct = $75, rt = $25, ht = $5, dt = 250 and st = $50, 000

(t = 1, 2, ..., 12). Note that both ht and dt are defined per period where a period equals two

months here. We consider a 12-period (two years) planning horizon and a 7% probability

of failure in each period (i.e. approximately a 42% 2 chance of success for phase II trials).

DiMasi and Grabowski (2007) provides averages for Phase II trial length of 26.0 months.

DiMasi (2001) and DiMasi et al. (2010) estimate Phase II success rate as 41.2% and 45%

respectively. Our illustrative example is consistent with these aforementioned averages. Al-

though not required by our model, the risk of failure is assumed identical in every period so

that the cumulative success rate is in line with industry averages. Further justification of

the parameters chosen here is provided in the next section.

For stationary production variable costs, it makes sense to utilize Eqs. (3.7)-(3.8), which

ignore the production variable costs except as included in the failure costs. We first consider

the classic W-W model ignoring the risk of failure. Figure 1a shows the production-inventory

costs, excluding the risk of failure, as a function of production schedule. From Figure 1a,

we see that satisfying 12 periods of demand with just one production run, is both the

optimal plan as calculated by the W-W model and also represents a typical heuristic of

pharmaceutical manufacturers (Shah 2004).

2(1− 0.07)12 ≈ 0.42
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Figure 1: Production Costs Excluding & Including the Risk of Failure

Figure 1b shows the same example, but now the costs account for the 7% probability of

failure in each period. The optimal plan is now to produce batches which satisfy six periods

of demand. This plan, which minimizes total expected costs, calls for two batches during

the planning horizon as compared with the one batch that is prescribed by the W-W model.

From Figure 1b, one easily sees that using the plan of satisfying all 12 periods of demand

with one production run as prescribed by the W-W model would lead to very high failure

costs. This is a direct consequence from carrying large amounts of inventory that will likely

be wasted due to demand failure. In fact, the optimal schedule generated by the failure-risk

model is expected to be 28% less costly than the optimal plan of the W-W model. Even

with the high fixed costs of this example, failure costs lead to reducing the optimal lot size

and scheduling more frequent production runs.

6. Numerical Study of Potential Savings

In this section, we conduct a comprehensive numerical study to gauge the potential savings

of incorporating failure risk into production planning by solving various environments that

clinical trial manufacturers may face. From our discussions with industry professionals, most

clinical supply managers plan for success despite knowing that failure is both likely and costly.

Thus, given our assumptions, the best plan to use as as a benchmark, would be the optimal

plan as given by the Wagner-Whitin model. In addition, Friend, et al. (2001) deemed

implementing the Wagner-Whitin model in a similar environment as “most beneficial” given

that it is “consistently superior” over widely used industry heuristics and algorithms; this

conclusion comes from a study using real data from the aircraft spare parts industry which

is similarly characterized by high fixed costs and low production volumes. While other

sophisticated models exist in the literature that account for failure uncertainty in clinical

trials, specifically those using stochastic programming techniques, direct comparison with
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those models is not possible as their focus is usually on scheduling the resource consumption

of a portfolio of drug candidates ready for commencing clinical trials. In contrast, our

model looks at just one drug candidate and optimally balances the forces advocating for

larger batches (such as high fixed costs) against those which advocate for smaller batches

(such as high failure probabilities, destruction costs, holding costs, and variable costs). This

will be especially useful for the small pharmaceutical firms3 that outsource their clinical

supply manufacturing, are not capacity constrained, and are very focused on cost efficiencies.

Our objective is to quantify the savings and identify conditions under which the savings of

incorporating failure into production planning are likely to be substantial. We vary our key

parameters, namely, production costs, holding costs, and failure probability based on our

observations of the industry. Please note that we do not explicitly model destruction costs

because including them in production costs is mathematically equivalent when production

variable costs are constant (see Eqs. 3.7-3.10).

Productions costs in our model are the portion of total manufacturing costs that vary di-

rectly with the number of units produced. In our estimates of production costs, we estimate

the variable cost of the active ingredient, the cost of packaging, the cost of distribution and

tracking, and the cost of destruction as a percentage of the fixed set-up cost of production.

In conversations with industry professionals, one clinical supply manager commented on a

trial where the syringe used to administer the investigational drug was $400, a cost certainly

included as a variable production cost in our model. As all of the aforementioned produc-

tion costs can vary widely based upon the costs of active ingredient production, packaging

requirements, formulation requirements, and dosing schedules; we employ a wide range of

production costs in our numerical study. To get the magnitude of our estimates, we look

to vaccine production, which, like clinical trial production, is less standardized and less pre-

dictable than typical commercial drug production (Institute of Medicine 2004). As a rough

proxy for clinical trial production, we expect the total variable cost to fixed set-up cost ratio

to be 3:5.4 Assuming that we obtain this ratio when we are producing 103 treatments per

batch, we get variable production cost per treatment of approximately 0.06% of the setup

cost per batch. Using this estimate as a reference, we employ a wide range for simulating

variable production costs per treatment of between 0.01% and 1.25% of the fixed set-up

costs.

Holding costs are the per unit costs associated with storing inventory and having money

tied up an inventory. Holding costs in the clinical trial supply chain are most likely higher

3For an example of this type of firm’s manufacturing philosophy, see page 12 of Ariad Pharmaceuticals
2009 Annual 10-K Filing.

4From the 2002 Mercer Management study we see that variable costs are 15% of total production costs
and batch costs are 25% of total production costs. Thus, a 3:5 ratio seems appropriate.

16

Yao Zhao
Pencil



Parameter Average Value Lower Bound Upper Bound
Production Cost Per Treatment

0.63% 0.01% 1.25%
(as % of Set-Up Cost)

Annual Holding Cost
45.5% 11% 80%

(as % of Prod. Cost)

Phase II Failure Probability 59% 45% 73%
Phase III Failure Probability 21.5% 13% 30%

Duration of Phase II Trial 2 Years – –
Duration of Phase III Trial 3 Years – –
Annual Phase II Demand 150 Treatments – –
Annual Phase III Demand 1,200 Treatments – –

Planning Period Two Months – –

Table 1: Parameters for Phase II and Phase III Simulations

than incurred in typical pharmaceutical supply chains due to costly tracking and auditing

of inventory levels. In addition, bio-tech molecules often require controlled storage environ-

ments which may add to the cost.5 For a lower bound on annual holding costs, we take the

conservative estimate of DiMasi et al. (2003) of 11% as the pharmaceutical industry’s real

cost-of-capital for money tied up in inventory. We choose an upper bound of 80% which

may better reflect the potentially high costs of storing and tracking each treatment and the

corresponding placebo.

Failure probability in drug development is well documented in the literature. If we

ignore Phase I trials because of the relatively small drug supply that is required, we apply

our analysis to the failure probability that is present in Phase II and Phase III of clinical

trials. Typically, failure is mostly likely to occur in Phase II where the phase II attrition

rate (i.e. probability of failure) is around 58.8%. Phase III performs better with an average

failure rate of 21.5% (DiMasi, 2001). Based on these numbers and noting that the average

length of Phase II and Phase III trials for new chemical entities are 26.0 months and 33.8

months, respectively (DiMasi and Grabowski, 2007), or roughly 2 and 3 years respectively,

we perform our parametric study around these industry averages as shown in Table 3.

Data Generation: We randomly generated 1,000 scenarios of potential cost structures

for a Phase II trial and another 1,000 scenarios for a Phase III Trial. Within each phase,

each scenario is identical with respect to planning horizon length, period length, demand

5An interesting note is how a whole industry has formed around clinical trial storage. In one corporate
press release (August 4, 2010), titled “Fueled by Customer Demand, World Courier Expands Its Global
Clinical Trial Storage and Distribution Network”, it demonstrates how a whole industry is forming around
the storage of clinical trial supply. (http://www.businesswire.com/news/home/20100804005073/en/Fueled-
Customer-Demand-World-Courier-Expands-Global)
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over the planning horizon, and fixed costs of production (which are normalized to $1). For

simplicity, demand is assumed equal in each period. Values for variable production costs,

planning horizon failure probabilities, and holding costs are then chosen as realizations of

uniformly distributed random variables bounded by the parameters in Table 3. Per period

failure probabilities are then calculated so that the randomly chosen planning horizon failure

probability is consistent with the cumulative effect of identical period failure probabilities.

For example, to split an overall probability of failure equal to 45% over 12 periods, the per

period failure probability would be 1− (1− 0.45)1/12 = 4.86%.

For each scenario, two optimal production plans were generated: 1) a Wagner-Whitin

production plan and 2) a failure-risk production plan. Since our goal is to understand under

what circumstances the failure-risk model is likely to outperform the Wagner-Whitin model,

we calculate, for each scenario, the percentage cost reduction by the failure-risk model relative

to the Wagner-Whitin model. We then plot the percentage savings against various system

parameters to gain insight.

The Phase II Simulation: The results of our Phase II simulations are shown in the four

graphs in Figure 2 with each diamond on the graphs representing one of the 1,000 scenarios.

In the 419 scenarios where the two models yield different results, the failure-risk model led

to savings with an average of 11%.

Since the traditional Wagner-Whitin model, like current industry practice, does not incor-

porate demand failure, it is quite intuitive that an increase in the likelihood of failure would

reduce the W-W model’s effectiveness. As shown in Figure 2a, the failure-risk model’s maxi-

mum potential savings over the W-W model does increase in failure probability. Nonetheless,

the presence of many scenarios with 0% savings at all failure probabilities demonstrates that

even high failure probabilities do not always lead to different solutions by the two planning

models. The solutions also depend on other system parameters, such as production costs

and inventory holding cost.

Figure 2b shows the impact of the variable production cost to fixed setup cost ratio in

our Phase II simulation. A threshold appears where the variable production costs, which in

our model include destruction costs, need to be sufficiently high for savings to be realized.

In particular, to achieve savings in our test scenarios, variable production costs must exceed

0.39% of the fixed set-up costs. This is true because when variable production costs are low,

the costs of failure in the form of wasted production are also low. As the variable to fixed

cost ratio increases beyond the threshold, the increased cost of failure leads to an increase

in expected magnitude of savings, because the production frequency under the failure-risk

model increases faster than that of the W-W model.

The impact of holding costs are studied in Figure 2c. It is interesting to note that in
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Figure 2: Expected Reduction in Costs Using F-R Algorithm in Phase II Simulations

our test scenarios, to achieve any savings, the ratio of holding costs to set-up costs must be

within a range of 0.017% to 0.111%. To see what is behind this observation, we present the

production frequency information in Figure 2d. On the secondary vertical axis, we present

the planned number of setups that each model recommends for each of the 1,000 scenarios.

Combining the information of production frequency and the percentage savings, we make

the following observations about this Phase II simulation:

• Both models call for either one or two setups during the 2-year planning horizon.

• The failure-risk model is most beneficial when holding costs are not too low. When

holding costs are too low, both the failure-risk and W-W models will both call for

producing just one big lot.

• The failure-risk model is most beneficial when holding costs are not too high. When

holding costs are too high, both models have the same plan of producing two times

over the planning horizon.

• The range of holding to fixed cost ratios observed above (where savings are possible)

approximately corresponds to the range within which the failure-risk model plans for
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two setups while the Wagner-Whitin model calls for one setup. In this range of sce-

narios, the potential benefits of the failure-risk model increase with increasing holding

costs. This is a simple reflection of the larger average inventory level, some of which is

more likely to be wasted, under the plan of the W-W model.

Phase III Simulation: Phase III clinical trials differ from Phase II trials due to their

longer duration, higher demand for treatments, but lower probability of failure. Our Phase

III simulation adjusts these parameters accordingly. One result of these changes is that out

of the 1,000 scenarios investigated, savings were achieved in 55.4% of the trials. This is more

frequent than the 41.9% frequency in which savings were achieved in the Phase II simulation.

However, Phase III savings, when they occurred, averaged about 2.85% which is significantly

less than the average savings of 11% observed in Phase II. The first difference is due to the

longer planning horizon, because with more periods, it is more likely that the two models

yield different solutions. The second difference is largely due to the lower failure rate.

Similar to our Phase II investigation, we look to a graphical representation of the per-

centage savings against certain key parameters of the model. These graphs are shown in

Figure 3. As seen in Phase II, the failure-risk model in Phase III has larger potential bene-

fits as the probability of failure increases (see Figure 3a). However, in contrast to our Phase

II results, Phase III has some noteworthy differences in regards to the potential for savings

against other parameters.

First, as shown in Figure 3b, the larger demand for treatments and longer planning

horizon substantially reduce the minimum production cost threshold. We see that savings

are achievable at almost any level of production cost. We also see a saw-blade pattern in the

diagram of these costs which is best explained by the data shown in Table 2. We see that the

maximum potential savings are achieved when the Failure Risk (F-R) algorithm plans two

setups while the W-W model plans only one setup. While production costs are not directly

responsible for the drop in savings that we see when production costs reach about 0.47% of

setup costs, they directly affect holding costs, which have been defined as a percentage of

production costs. At production costs of about 0.47%, holding costs are driven sufficiently

high such that the W-W model will perform a minimum of at least two setups over the

planning horizon. As seen in Table 2, once the W-W model plans for more than one setup,

the maximum potential savings drops significantly.

In the Phase II simulation, we saw that holding costs were required to be within a

certain range for savings to occur. From our Phase III chart of holding costs (Figure 3c),

we see several ranges of holding costs that have different effects on the savings achieved.

In Figure 3d, we overlay the frequency of production that the two models call for on the

second vertical axis. As we increase the holding costs, we notice a transition in the failure-
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Figure 3: Expected Reduction in Costs Using F-R Algorithm in Phase III Simulations

risk production plans from one of less frequent setups to one of more frequent setups. This

transition is then followed by a similar transition of the W-W plan to one of more frequent

setups. As shown in both Table 2 and Figure 3d, savings are achieved every time the failure-

risk model makes the jump to a production plan that has more frequent setups than the

W-W model. Savings then return to zero once the W-W model transitions to the same

schedule that the failure-risk model calls for.

7. Industry Notes

Mapping the results of our analysis to industry, we expect the failure-risk model to have the

most significant impact for drugs that have a high probability of failure, sufficiently high

production costs and relatively low inventory holding costs. Since it is hard to characterize

holding and production costs for a certain clinical trial environment, we comment only on

the probability of failure that is seen during clinical trials. In pharmaceutical and bio-tech

industries, we see below-average success probabilities for drugs in the following therapeutic

classes: antineoplastic, cardiovascular, central nervous system, immunologic, and respiratory
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Planned Number of
Setups Using W-W
Algorithm

Planned Number of
Setups Using F-R
Algorithm

Maximum % Sav-
ings Observed

1 2 26.7%

2
3 12.1%
4 16.7%

3 4 5.5%

4
4 0.2%
5 3.1%
6 4.5%

5
5 0.1%
6 2.3%

Table 2: Maximum Observed % Savings Versus Number of Setups During Phase III Simu-
lation

Therapeutic Class Phase I-II (%) Phase II-III (%) hase I-II (%)
Antineoplastic/Immunologic 71.8 49.0 55.3
Cardiovascular 62.9 32.4 64.3
Central Nervous System 59.6 33.0 46.4
GI/Metabolism 67.5 34.9 50.0
Musculoskeletal 72.4 35.2 80.0
Respiratory 72.5 20.0 85.7
Systemic anti-infective 58.2 52.2 78.6

Table 3: Phase transition probabilities by therapeutic class

medicines (DiMasi 2001, DiMasi et al. 2004). In a more recent study (DiMasi et al. 2010),

phase transition rates (probability of a drug that enters one phase of clinical testing starting

the subsequent phase of testing) are estimated as follows for various therapeutic classes:

While clinical trials are often fraught with uncertainty, this model is applicable when the

main uncertainty surrounding supply planning decisions stems from the potential for failure

of the drug. This failure is most likely a result of information gathered about the safety or

effectiveness of a drug as a particular phase of the trial is underway. Additionally, this failure

may be a result of drug stability or even unforeseen financial considerations. No matter the

cause of failure, this model is a useful tool for balancing production efficiencies against waste

resulting from trial failure when uncertainty in actual drug requirements is minimal and drug

portfolio considerations are less of a concern. Additionally, as a trial progresses and estimates

of failure likelihood are updated, the planning horizon theorem (Theorem 2) demonstrates

that updates to a scheduled production run’s planned quantities may change, it will still be
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optimal to produce in that period albeit possibly in a different amount. Thus, some learning

about failure as the trial continues can be accommodated by the model and has been used

by practitioners in rolling horizon models (Wagner, 2004).

As noted by Shah(2004), the need for sophisticated models in the pharmaceutical supply

chain is great. Thus, the simple structure of the F-R model may not always accommodate

the realities of a complex clinical trial supply chain. However, as noted by Federgruen

and Tzur (1991), the W-W model arises as a subproblem in many hierarchical planning

solutions including multi-item, multi-stage production systems (when “formulated as mixed

integer programs and solved via Lagrangean relaxation”) and multi-item capacitated lot

sizing problems (e.g van Norden and van de Velde, 2005). Thus, by connecting the F-R

model to the W-W model, failure uncertainty can be incorporated to an even more complex

set of problems than just the examples presented here.

8. Conclusion

This paper applies operations management models to clinical trial drug supply chains and

demonstrates their potential impact. Specifically, we consider a class of dynamic economic

lot size models under the risk of demand failure – the failure-risk models. We show that the

stochastic failure-risk models can be transformed to corresponding W-W models where only

the cost parameters need to be adjusted according to the failure risk and destruction cost.

Therefore, many of the classic results for W-W models directly apply here. Most interestingly,

the planning horizon theorem (Theorem 2) indicates that learning during clinical trials does

not affect supply decisions under certain conditions. Our numerical study (based on our

observation of the industry) reveals that while the failure-risk model does not always call for a

production plan different from the W-W model, certain combinations of holding, production,

and setup costs lead to substantive savings.

The model and insights developed in this paper indicate ways to improve the current

practice of clinical trial supply chains. Often, pharmaceutical/bio-tech companies employ

different teams to plan for clinical trial activities and clinical drug supplies, where each team

reports to its own Vice President. There is little connection between the teams beyond

the direct supply and demand relationship, and the supply team typically plans for success

(i.e., ignores failure in planning). This paper shows that proper communication between the

teams about the failure probabilities and properly accounting for failures in drug supplies

can help the supply team substantially reduce drug manufacturing cost without harming

service. We should point out that the models and results developed here also apply to other

business practices where demand may cease to exist at a uncertain future date.
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The huge potential of integrating clinical trial activities and the drug supply chain has

recently been recognized both in academia and in industry. While there is ample work to

be done, we suggest the following specific research directions: (1) An Empirical Study: This

paper provides some empirical evidence of the magnitude of spending needed to support

clinical trial supply chains. A more comprehensive empirical study is needed to verify the

financial significance and determine the impacting factors. (2) Multi-Product/Multi-echelon

Optimization: Drug supply chains often consist of multiple manufacturing steps that are

done in geographically dispersed facilities, e.g., the active pharmaceutical ingredients (API)

manufacturing, formulation and packaging (Bernstein and Hamrell 2000). Furthermore,

companies may have multiple investigational drugs in clinical trials simultaneously. Thus, it

is important to generalize the model to coordinate multiple drugs in multi-echelon clinical

trial supply chains. (3) Outsourcing Contracts: While many large pharmaceutical companies

produce investigational drugs in-house, most smaller companies outsource production to 3rd

party manufacturers. Given the potential failure risk and the large costs of production, con-

structing efficient and fair outsourcing contracts is important to both clinical trial suppliers

and pharmaceutical companies.

Appendix

Proof of Proposition 1. The proof of the first statement follows that of Zipkin (2000) problem 4.6. Briefly,
for any fixed sequence of production times, we note that h′j , s

′
j and c′j are either independent of αt or linear

functions of αt. Therefore, given the sequence of production times, C∗ is linear in every αt. C
∗ is concave

in αt because C∗ is the minimum cost over all possible sequence of production times.
To prove the second statement, we consider α1 as a special case. For α2

1, s′1 = s1 and c′1 = c1,

s′t = st ·Πt−1
j=1βj(1 + α1), t > 1

c′t = ct ·Πt−1
j=1βj(1 + α1), t > 1

h′1 = α2
1(r2 − h1) + h1 ≤ [α1(r2 − h1) + h1](1 + α1)

h′t = (αtrt+1 + βtht) ·Πt−1
j=1βj(1 + α1), t > 1.

Suppose that the optimal sequence of production times remains the same for both α1 and α2
1. Then C∗(α2

t ) ≤

(1 + αt)C
∗(αt). Otherwise, the same inequality also holds because C∗(α2

t ) becomes even smaller. The same

proof applies to all αt for t > 1. 2
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