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Abstract

We consider acyclic supply chains under the full backorder assumption and reveal several

simple yet unique properties. Most interestingly, we identify conditions for the best dedicated

stocking policy to outperform the best shared stocking policy, and for an acyclic supply chain

to be decomposable into a simpler network (e.g., tree). We specify ways to decompose them.
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1 Introduction

In this paper, we consider acyclic supply chains facing random demand under the assumption that

unsatisfied demand at each node is fully backlogged. The objective of this paper is to develop

structural results on how to manage inventory in such a supply chain by utilizing a sample-path

analysis of the system dynamics for various inventory policies and demand processes.

It is not rare to find an acyclic supply chain in practice because common components may be

shared by multiple subassemblies, many of which are assembled into one final product. We refer

the reader to Billington, et al. (2004) for a real-world example, and to Zipkin (2000) chapter 5 and

Axsater (2006) chapter 8 for more illustrations. More formally, let a node be a unique combination

of facility and product, an arc be an immediate supply-demand relationship between two nodes,

and a “transit time” be the processing time at a node or the shipping time from one node to

the other (Svoronos and Zipkin 1991). An acyclic supply chain is a network of nodes and arcs

with no cycles but possibly multiple directed paths between some pairs of nodes. An example is

illustrated in Figure 1. This is a four-stage network with one final product, two subassemblies
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Figure 1: An example of acyclic supply chains.

and one common component. Multiple copies of the component travel by different paths and are

eventually assembled into one unit of the final product.

For acyclic supply chains with random demand, so far only guaranteed service-time models are

considered in the literature. We refer to Lesnaia (2004), Minner (2000), Magnanti, et al. (2006)

and Humair and Willems (2007) for various solution methods, and to Lesnaia (2004) and Graves

and Willems (2003) for recent reviews. Under the guaranteed service-time assumption, one does

not model what happens when demand exceeds on-hand stock, but rather assumes that the supply

chain responds with an extraordinary measure which always ensures fulfillment of the demand at

the service time. Thus, the lead times are constant. The inventory positioning problem is then

formulated as a mathematical programming problem that minimizes a concave cost function on a

polyhedron. It is reported in this research stream that acyclic supply chains are much harder to

solve than tree networks.

In this paper, we study the stochastic service-time model for acyclic supply chains with random

demand. In this model, all unsatisfied demands are fully backlogged at each node, and the backorder

is cleared only when on-hand inventory becomes available. Thus, lead times are random and service

times cannot be guaranteed.

Under the stochastic service-time model, Rosling (1989) characterizes the optimal inventory

policy for pure assembly systems with constant transit times. For more general assembly systems

with stochastic transit times and/or multiple products, the optimal policy is not known but an exact

analysis is given for systems with heuristic policies under various assumptions of supply systems

and demand processes, see Song and Zipkin (2003), de Kok and Fransoo (2003) and Simchi-Levi

and Zhao (2007) for literature reviews.

Acyclic supply chains are combinations of assembly and distribution systems. Consider the

four-stage acyclic supply chain in Figure 1, it is clear that the analysis and results of Rosling (1989)

do not apply because from node 4, there are two directed paths that lead to node 1. The acyclic
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supply chain is also different from pure distribution systems because the ordering decisions of nodes

2 and 3 are coupled due to the assembly operation at node 1. The optimal inventory policy for such

a system is unknown and at least as complex as those of pure distribution systems. In practice only

simple and suboptimal heuristic policies are used, e.g., base-stock policies. However, to our best

knowledge, these heuristic policies are not studied for acyclic supply chains with random demand

under the stochastic service-time model. System dynamics are not understood.

For a node in an acyclic supply chain, it is common to pool inventory into one stock pile to

satisfy demand from all downstream paths on a first-come-first-serve (FCFS) basis. We call such

a policy the shared stocking policy. This policy allows one to achieve the risk-pooling effect. The

policy is assumed by all aforementioned work (see Graves and Willems 2000, Eq. 3) and confirmed

by reports of industrial practice (see, e.g., Billington, et al. 2004). Alternatively, one can split

inventory into multiple stock piles and dedicate each to a unique downstream path. We call such

a policy the dedicated stocking policy. This policy provides the flexibility of setting different stock

levels for different paths, and therefore, better positions inventory along each path. We call such

an effect the stock-positioning effect.

In this paper, we focus on simple heuristic policies that are widely implemented in practice and

extensively studied in the literature. We demonstrate several unique and important properties for

acyclic supply chains with a single final outlet by a sample-path analysis and a numerical study

(§2-3). Most interestingly, we show that under certain assumptions, for any node serving multiple

paths that lead to the final outlet, the best dedicated stocking policy always outperforms the best

shared stocking policy. For example, in the 4-node network of Figure 1, node 4 serves two paths (via

nodes 2 and 3) leading to the same outlet, node 1. Because the order processes of nodes 2 and 3 are

all driven by node 1, they can be synchronized in both timing and quantity under certain inventory

policies. In these cases, the shared stocking policy at node 4 does not achieve the risk-pooling effect;

but the dedicated stocking policy at node 4 does achieve the stock-positioning effect and thus can

strictly outperform the former. When the transit times are constant, such an acyclic supply chain

can be decomposed into a tree network with an equal or better performance. We discuss extensions

of the results to acyclic supply chains with multiple outlets in §4.

2 The Basic Model

Throughout this paper, we assume that unsatisfied demand at each node is fully backordered,

outside suppliers have ample stock, and transit times are sequential (Zipkin 2000, Chapter 7) and



4

Figure 2: Examples of acyclic supply chains with a single final outlet.

apply to each shipment as a whole. We also assume that demand can be split, i.e., each unit of

demand can be satisfied separately, and in assembly operations, a unit can be assembled only if all

required components are available.

For the ease of exposition, we define the “basic model” by the following assumptions.

Assumption 1 The supply chain has a single final outlet; Each node utilizes an installation
continuous-time base-stock policy with a non-negative base-stock level; the bills of material (BOM)
matrix has unit elements; External demand follows Poisson process, and demand is satisfied on a
FCFS basis at each node. Under the shared stocking policy, each node keeps inventory in units of
m where m is the number of downstream paths that connect the current node to the final outlet;
Transit times are constant.

In this section, we focus on the basic model for acyclic supply chains (see Figure 2 for more

examples with a single final outlet). We will discuss extensions of the results to stochastic, sequential

and exogenous transit times, general BOM matrix and negative base-stock levels whenever possible.

Recursive Equations. Consider an acyclic supply chain under the shared stocking policy under

Assumption 1. We denote it by G = (N ,A), where N is the node set and A is the arc set. The

nodes in the network are indexed by 1, 2, . . . , N , where N = |N | is the total number of nodes in the

network. For node k ∈ N , there are totally mk > 0 distinct downstream paths that connect it to

the final outlet. For node k, let its supplier set be S(k) = {j ∈ N : (j, k) ∈ A}, and its customer

set be C(k) = {i ∈ N : (k, i) ∈ A}.
By Assumption 1, we note that the demand arrival processes at all nodes are identical. While

the final outlet faces unit demand, node k faces demand always in the quantity of mk units. By

Assumption 1, node k keeps inventory in units of mk. Regarding each demand arrival as one flow

unit at each node, we let the base-stock level at node k be mksk.
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For node k, let nk be the index of demand arrivals, Xk(nk) be the stockout delay for the demand

arrival nk, and Wk(nk) be the inventory holding time at node k for the corresponding item that

satisfies the demand arrival nk. For a demand arrival nk, the corresponding order at node k is

placed T (sk, nk) time in advance (Simchi-Levi and Zhao 2005), where T (sk, nk) is the total time

if one starts at the arrival time of demand nk and counts backwards until the number of demand

arrivals at stage k reaches sk (we drop subscript k from T because all nodes face identical demand

arrival processes). The corresponding order is a demand at each supplier of node k, j ∈ S(k),

which can be indexed by nk − sk. Finally, let L̃k(nk) be the total replenishment lead time at node

k for the order triggered by demand arrival nk, and Wi,k(nk) be the component i’s waiting time at

node k before processing (due to the unavailability of other components) for the order triggered by

demand arrival nk.

The recursive equations at node k can be written as follows.

Xk(nk) = [L̃k(nk − sk) − T (sk, nk)]+ (1)

Wk(nk) = [T (sk, nk) − L̃k(nk − sk)]+ (2)

L̃k(nk − sk) = max
j∈S(k)

{Xj(nk − sk) + Lj,k} + Lk (3)

Wj,k(nk − sk) = max
l∈S(k)

{Xl(nk − sk) + Ll,k} − [Xj(nk − sk) + Lj,k], j ∈ S(k), (4)

where Li,j is the transit time from node i to node j, and Li is the transit time at node i.

To illustrate the complexity and unique properties of acyclic supply chains, we apply Eqs.

(1)-(4) to the four-stage acyclic supply chain in Figure 1. For node 1,

X1(n1) = [L̃1(n1 − s1) − T (s1, n1)]+ (5)

W1(n1) = [T (s1, n1) − L̃1(n1 − s1)]+ (6)

L̃1(n1 − s1) = max{X2(n1 − s1) + L2,1, X3(n1 − s1) + L3,1} + L1 (7)

Wi,1(n1 − s1) = max{X2(n1 − s1) + L2,1, X3(n1 − s1) + L3,1} − Xi(n1 − s1)− Li,1, i = 2, 3. (8)

For nodes k = 2, 3,

Xk(n1 − s1) = [L̃k(n1 − s1 − sk) − T (sk, n1 − s1)]+ (9)

Wk(n1 − s1) = [T (sk, n1 − s1)− L̃k(n1 − s1 − sk)]+ (10)

L̃k(n1 − s1 − sk) = X4(n1 − s1 − sk) + L4,k + Lk. (11)
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Figure 3: The timeline of the four-stage acyclic supply chain.

Figure 3 provides a visual aid where nk(n1) is the demand arrival at node k that corresponds to

the external demand n1. Clearly, nk(n1) = n1 − s1 for k = 2, 3. For the ease of exposition, define

n4(n1) = n1 − s1 − s3 and n′
4(n1) = n1 − s1 − s2. For node 4,

X4(n1 − s1 − sk) = [L̃4(n1 − s1 − sk − s4) − T (s4, n1 − s1 − sk)]+ (12)

W4(n1 − s1 − sk) = [T (s4, n1 − s1 − sk)− L̃4(n1 − s1 − sk − s4)]+, k = 2, 3. (13)

An acyclic supply chain differs from simpler networks, e.g., tree, because to satisfy a demand

n1 at node 1, we need to consider multiple demand arrivals, n4(n1) = n1 − s1 − s3 and n′
4(n1) =

n1 − s1 − s2, at node 4 if s2 �= s3. Unlike the simpler networks where nk is uniquely determined

by n1 for each upstream node k, here n4 also depends on the path that connects node 4 and

node 1. The complexity introduced by such a path dependence is that to characterize X1(n1), one

needs to estimate the joint probability distribution of consecutive transit times at one node (e.g.,

L̃4(n4(n1) − s4) and L̃4(n′
4(n1) − s4) at node 4).

Based on the above analysis, we now develop system properties that are unique for acyclic

supply chains. In particular, we focus on three issues: stock balancing, shared vs. dedicated

stocking policy, and decomposition of an acyclic supply chain to a tree.

Stock Balancing. An important feature of acyclic supply chains is that multiple units of one

component can travel by different paths and are assembled into one final product. For instance,
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consider the acyclic network in Figure 1 where two units of the item at node 4 are assembled

into one product at node 1. If s2 = s3, then n′
4(n1) = n4(n1), and the two units assembled into

one product at node 1 are in the same order placed by node 4; otherwise, they are in different

orders. If s2 > s3, then n′
4(n1) < n4(n1). By the non-crossing property of sequential transit times,

the corresponding order for demand n′
4(n1) is placed and replenished at node 4 earlier than the

corresponding order for demand n4(n1) in any event (see Figure 3). Thus, s2 and s3 not only affect

T (·, ·) in Eqs. (9)-(10), but also affect L̃k(·), k = 2, 3 because they determine the sequence of the

corresponding orders at node 4. The following proposition summarizes the intuition (see Appendix

for a proof).

Proposition 1 Consider the acyclic network in Figure 1 under Assumption 1. Let s2 ≥ s3.

1. If L4,2 + L2 ≤ L4,3 + L3, then in any event,

X2(n1 − s1) ≤ X3(n1 − s1) (14)

W2(n1 − s1) ≥ W3(n1 − s1). (15)

2. Furthermore, if L2,1 ≤ L3,1, then in any event, reducing s2 to s3 results in smaller W2(n1−s1)
and W2,1(n1 − s1), and larger X2(n1 − s1), while all other X ′s and W ′s remain the same.
That is, reducing s2 to s3 results in better system performance in any event.

Intuitively, if L4,2 + L2 ≤ L4,3 + L3 and L2,1 ≤ L3,1 (i.e., the path through node 3 has a

longer transit time), then node 3 should have a greater stock level than node 2. Proposition 1

confirms the intuition and provides stronger “stochastic inequalities.” However, if L4,2+L2+L2,1 ≤
L4,3 + L3 + L3,1 but L2,1 > L3,1, part (2) of the proposition does not necessarily hold because

L1(n1 − s1) can increase as s2 decreases. Thus, it is no longer a stock balancing problem among

paths but a stock positioning problem for the entire system.

In some real world applications, L2,1 can equal L3,1 because subassemblies are in the same

location as the final assembly. It is worth pointing out that Proposition 1 is based on a sample-

path analysis and thus applies to negative base-stock levels and stochastic sequential transit times.

Proposition 1 can be extended to acyclic supply chains with multiple subassemblies. For brevity,

we omit the details.

Shared vs. Dedicated Stocking Policy.

Consider an acyclic supply chain under Assumption 1. Let equally dedicated stocking policy

be the special case of dedicated stocking policy with equal base-stock levels for all downstream
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paths at each node. Let ss, sd and se be the base-stock level vector of the shared stocking

policy, dedicated stocking policy and equally dedicated stocking policy, respectively. In partic-

ular, ss = (m1s1, m2s2, ..., mNsN ), sd = ([s1,1, ..., s1,m1], [s2,1, ..., s2,m2], ..., [sN,1, ..., sN,mN
]), and

se = ([s1, ..., s1], [s2, ..., s2], ..., [sN, ..., sN ]) where the k-th element of se, [sk, ..., sk], is an identical

vector of mk dimension. By definition, the feasible space for se, De, is a subspace of the feasible

space for sd, Dd. Let U(·) be a performance metric of the system as a function of the base-stock

level vector. Here, U(·) is generally defined; it can be total on-hand inventory cost or total inven-

tory investment. Without loss of generality, we consider the total inventory cost. Obviously, the

dedicated stocking policy always outperforms the equally dedicated stocking policy, that is,

min
se∈De

U(se) ≥ min
sd∈Dd

U(sd). (16)

We are now ready to prove the main theorem of this paper.

Theorem 1 Consider any acyclic supply chain under Assumption 1. Given everything else being
equal, the best dedicated stocking policy always outperforms the best shared stocking policy for the
performance metric U(·).

Proof. For an acyclic supply chain under the shared stocking policy ss = (m1s1, ..., mNsN ), we first

group nodes by the number of their downstream paths, mk. Second, we present an algorithm to

split the supply chain into one under the equally dedicated stocking policy following the increasing

order of mk. Thirdly, we prove that in each step of the algorithm, the network performs equally

on every sample path before and after splitting. Finally, we show that the resulting supply chain

under the equally dedicated stocking policy could not outperform the one under the best dedicated

stocking policy.

For the ease of exposition, we first index the final outlet by 1 and define node sets

Ni = {k ∈ N : mk = i}, i = 1, 2, ....

Second, we present the following “splitting” algorithm:

Step 1. Set i = 2;

Step 2. If Ni = ∅, skip to Step 3. Otherwise, split inventory at each node in Ni as follows: Select

the most downstream node in Ni not yet split and denote it by k (if the non-split nodes in

Ni do not have a supply-demand relationship, select any of them). For the selected node k,
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split its inventory level mksk into mk stock piles with equal base-stock levels sk, where each

stock pile is dedicated to satisfying demand from a unique downstream path;

Step 3. If i > maxk∈N{mk}, stop. Otherwise, set i = i + 1 and go back to Step 2.

The algorithm starts with i = 2 because we do not need to split the inventory at any node k ∈ N1.

Thirdly we prove that in each iteration of the above splitting algorithm, the network performs

equally on every sample path before and after splitting. In particular, we prove that in Step 2

above, Xk(nk) and Wk(nk) remain the same in any event before and after splitting. To this end,

for each sample path, we make the following observations:

1. The demand arrival process at node k from each dedicated stock pile at node i ∈ C(k) remains

the same before and after splitting. In other words, for any demand n1 at node 1 (the final

outlet), the corresponding demand index at node k, nk, does not change before and after

splitting. This is true because at this iteration, no change is made to C(k) and their demand

streams.

2. The index for the corresponding order placed by node k that satisfies demand nk remains

unchanged before and after splitting. This is true because before splitting, the index equals

nk−sk (at node k, the stock keeping unit is in mk), while after splitting, the index also equals

nk − sk (equally dedicated stocking policy with stock level sk).

3. For each node j ∈ S(k), given a demand index nj, the corresponding Xj(nj) and Wj(nj) remain

the same before and after splitting because no change is made to them at this iteration.

By the first two observations above, at node k, T (sk, nk) for each dedicated pile equals the one

before splitting, which is the sum of interarrival times from the (nk − sk)-th demand to the nk-th

demand at node 1. By the second and the third observations above, we have that Xk(nk), Wk(nk),

L̃k(nk) and Wj,k(nk) remain unchanged at node k after splitting (given in Eqs. (1)-(4)).

Applying the same logic to every iteration of the algorithm, we conclude that the shared stocking

policy can be replaced by an equally dedicated stocking policy that performs equally in any event.

Finally, it follows by Eq. (16) that the resulting equally dedicated stocking policy could not

outperform the best dedicated stocking policy. The proof is now completed.

The intuition behind this theorem is that in acyclic supply chains, for a node serving multiple

downstream paths leading to the same final outlet, the outlet drives the order processes along
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Figure 4: The corresponding tree network for examples in Figure 2.

all paths. Under certain assumptions of demand processes, inventory policies, transit times and

network topology, the order processes of these paths are synchronized in both timing and quan-

tity. For such a node, pooling inventory does not achieve the risk-pooling effect; but splitting

the inventory into dedicated stock piles and allowing the stock-levels to be different does achieve

the stock-positioning effect. In these cases, the dedicated stocking policy outperforms the shared

stocking policy.

By this intuition, we can easily see that Theorem 1 extends to any BOM matrix if we redefine

the flow unit along each path appropriately. Theorem 1 also holds for negative base-stock levels,

because for any node serving multiple paths leading to the final outlet, the demand from all paths

is completely synchronized regardless of the sign of the base-stock levels. Finally, Theorem 1 holds

for exogenous and sequential stochastic transit times. To see this, we consider a node with multiple

dedicated stock piles. An order placed by this node is the sum of orders triggered at all its stock

piles. Because the transit time applies to each order of the node as a whole, the transit time of

each order placed by this node does not change before and after “splitting”.

In §3, we present numerical examples in which the dedicated stocking policy outperforms the

shared stocking policy.

Acyclic Supply Chain vs. Tree. We are now ready to show that under certain conditions, an

acyclic supply chain can be decomposed into a tree network without increasing inventory cost (see

Appendix for a proof).

Theorem 2 Under Assumption 1, an acyclic supply chain can always be decomposed into a tree
network which performs at least as well as the original system.

Theorem 2 implies that under certain conditions, acyclic supply chains can be decomposed into

tree networks without loss of performance. Tree networks are much easier to solve than acyclic
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networks, see Simchi-Levi and Zhao (2005) for an algorithm based on dynamic programming and

two-moment approximations. Theorem 2 is exemplified by Figure 4 which shows the resulting tree

network for each acyclic supply chain in Figure 2. Because the optimal dedicated stocking policy

tends to be different for paths heterogeneous in transit time and cost, the performance improvement

of the resulting tree networks tends to increase in these cases. Lastly, due to constant transit times,

we can apply Rosling (1989) to the resulting tree networks and improve their performance over

installation base-stock policies.

It is easily seen that Theorem 2 also holds for any BOM matrix and negative base-stock levels.

However, when the transit times are stochastic sequential and exogenous, Theorem 2 does not

hold. This is because the transit times for consecutive orders placed by a node are dependent,

and therefore, the transit times for orders generated by different stock piles at the same node are

also dependent. Hence, the processing facility cannot be split into multiple facilities that operate

independently.

3 A Numerical Study

In this section, we provide examples to show that the dedicated stocking policy can perform strictly

better than the shared stocking policy. Consider the acyclic supply chain in Figure 1 under As-

sumption 1. Without loss of generality, we assume Li,j = 0 for all arcs. Let the demand arrival rate

λ = 1, L1 = 1 and h4 = 1 where hi is the installation inventory holding cost at stage i = 1, 2, 3, 4.

Node 1 is required to provide an immediate fill rate of 95%. In the corresponding tree structure

supply chain, the original node 4 is split into two nodes with the new node 4 supplying node 2

and an additional node 4’ supplying node 3, while everything else remains unchanged. We use

simulation to search for the optimal solution of each network where the simulated fill rate at node

1 must be at least as high as the target fill rate but not exceeding 95.6%, and the difference of the

simulated fill rates between the two networks is less than 0.5%.

To build intuition, we first consider the case of L2 = L3, i.e., the paths are symmetric in transit

time. In this case, the shared stocking policy performs as well as the dedicated stocking policy

because the optimal dedicated stock levels at nodes 4 and 4’ must be identical. When paths are

asymmetric in transit time, then in the corresponding tree network, the optimal dedicated stock

levels at nodes 4 and 4’ may be different, and the dedicated stocking policy can outperform the

shared stocking policy. We consider 3 cases.
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Case 1: h2 = h3 but L2 > L3. We set (h1, h2, h3, h4) = (4, 1.5, 1.5, 1) and L3 = 1. In examples

with combinations of L2 ∈ {5, 10} and L4 ∈ {5, 10}, the savings range from 0 to 3.58%

with the highest saving corresponding to the case with L2 = 10 and L4 = 5. The optimal

base-stock levels of the shared (dedicated) stocking policy are (s1, s2, s3, 2s4) = (5, 14, 2, 12)

((s1, s2, s3, s4, s4′) = (5, 16, 2, 2, 6)).

Case 2: h2 < h3 but L2 > L3. We set (h1, h2, h3, h4) = (6, 1.5, 3, 1) and L3 = 1, L4 = 10. In

examples with L2 ∈ {2, 5, 10}, the savings range from 2.87% to 4.45% with the highest saving

corresponding to the case with L2 = 10. The optimal base-stock levels of the shared (dedi-

cated) stocking policy are (s1, s2, s3, 2s4) = (5, 15, 2, 24) ((s1, s2, s3, s4, s4′) = (5, 14, 1, 12, 14)).

Case 3: h2 > h3 but L2 > L3. We set (h1, h2, h3, h4) = (6, 3, 1.5, 1) and L2 = 10. In ex-

amples with (L3, L4) = (5, 10), (2, 10), (5, 5) and (2, 5), the savings range from 0.88% to

3.12% with the highest saving corresponding to the case with (L3, L4) = (5, 5). The optimal

base-stock levels of the shared (dedicated) stocking policy are (s1, s2, s3, 2s4) = (6, 12, 7, 24)

((s1, s2, s3, s4, s4′) = (4, 14, 10, 7, 4)).

In summary, the savings can be sizable when the transit time is out of balance across paths that

lead to the final outlet. Rather than keeping identical stock levels at node 4 for all downstream

paths (as in the shared stocking policy), the dedicated stocking policy can allow dedicated stock

piles at node 4 to choose different stock levels and therefore optimally position inventory for each

path.

4 Extensions

In this section, we discuss the robustness of Theorems 1-2 in more general acyclic supply chains.

General Demand Processes. We first replace the Poisson demand process in Assumption 1 by

an arbitrary unit demand process (e.g., renewal unit demand). The recursive Eqs. (1)-(4) still hold.

Because Proposition 1 and Theorems 1-2 are based on a sample-path analysis, they hold regardless

of the probability law governing the demand arrival process.

We then replace the Poisson demand process in Assumption 1 by a general batch demand

process. We observe that for any node serving multiple paths that lead to the final outlet, demands

from all downstream paths are still completely synchronized in both timing and quantity. We

further assume that such a node utilizes the “virtual allocation” rule (Graves 1996) to satisfy
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demand. Under this rule, the node satisfies the same proportion of demand from all downstream

paths. Consider a demand unit at a node, the exact recursive equation of X and W can be obtained

in the same way as Zhao (2007). Furthermore, all the system properties in §2 hold true here because

demand can be split, which implies that batch demand processes can be regarded as special cases

of unit demand processes where the interarrival times between consecutive demand arrivals can be

zero.

Other Inventory Policies. We replace the continuous-time base-stock policy and FCFS rule in

Assumption 1 by a periodic review base-stock policy and the “virtual allocation” rule. We also

assume that the external demand arrives at the end of each period and the review periods are

nested, i.e., whenever a node orders, all of its customer nodes order. We consider two cases: (1)

The review periods are identical. In this case, the recursive equations are identical to those under

a continuous-time base-stock policy but with batch demand and constant interarrival times. Thus

Theorems 1-2 hold by our analysis for general demand process. (2) The review periods are not

identical. We observe that for any node serving multiple paths that lead to the final outlet, demand

from different downstream paths is still completely synchronized in each period. By the “virtual

allocation” rule, Theorems 1-2 hold. However, we must point out that these results may not hold

if one discards the assumptions of “virtual allocation” and nested review periods.

For acyclic supply chains with batch ordering policy, Theorems 1-2 do not hold in general

because the orders placed by nodes with different batch sizes are not synchronized.

Multiple Final Outlets. Acyclic supply chains with multiple final outlets are much more complex

than those with a single final outlet. Although some of these networks can still be decomposed into

simpler ones, they require more specific conditions and are case-dependent. We consider a specific

example to illustrate the idea: We identify nodes with completely synchronized demand from all

downstream paths that lead to each final outlet. This idea can be applied to any acyclic supply

chain to check if a reduction of network complexity can be achieved.

The example is shown in Figure 5 (a), which is inspired by a real-world problem, see Billington,

et al. (2004), Figure 7 on page 67. Clearly, the timing of the order processes of nodes 3 and

4 are synchronized, i.e., nodes 3 and 4 always place orders at the same time. If assembling one

unit at node 1 requests the same amount of component 3 and the same amount of component 4

as assembling one unit at node 2, then properly defining the flow units at node 3 and 4 yields

completely synchronized order processes (in both timing and quantity) placed by node 3 and 4.
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Figure 5: An example of acyclic supply chains with multiple final outlets.

Further assuming Assumption 1 holds except that there are multiple final outlets, then one can

replace the acyclic network by a network with at most one directed path between each pair of nodes

(Figure 5 (b)), which performs at least as well as the original system.

In conclusion, we shall point out that while an acyclic supply chain may be decomposed into

a simpler network (e.g., a tree or a network with at most one-directed path between each pair

of nodes) which is easier to solve and plan for, the dedicated stocking policy may increase the

complexity of operations and incur extra administrative cost. Furthermore, allowing complexity to

increase also opens doors to more complex and possibly better performing inventory policies. It

will be interesting for future research to identify such policies.
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Appendix

To prove Proposition 1, we need the following definition.

Definition 1 The sequential lead-time rule for a one-product inventory system with base-stock level
s states that the orders are delivered in the same sequence as they are placed. In other words, if
two orders, n′ ≤ n′′, are placed at t′ ≤ t′′, respectively, then it is always true that

max{t′ − T (s, n′) + L̃(n′), t′} ≤ max{t′′ − T (s, n′′) + L̃(n′′), t′′}. (17)

Note that in Eq. (17), max{t − T (s, n) + L̃(n), t} is the time at which the n-th order is fulfilled,

which is an increasing function of the order arrival time t.
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Proof for Proposition 1. Consider a sample path for the demand arrival process. For the ease

of exposition, we assume that the orders n2 = n1 − s1 and n3 = n1 − s1 (to satisfy demand n1) are

placed at time t, and orders n4 = n1 − s1 − s2 and n′
4 = n1 − s1 − s3 (to satisfy n2 and n3) are

placed at time t2 and t3, respectively, where t2 = t − T (s2, n1 − s1) and t3 = t − T (s3, n1 − s1).

To prove part (1), we first note t2 ≤ t3 because T (s2, n1−s1) ≥ T (s3, n1−s1) by the definition of

T (sk, n1−s1) and the condition s2 ≥ s3. Second, Assumption 1 implies L̃4(n4−s4) = L̃4(n′
4−s4) =

L4. Then at node 4, the demand n2 from node 2 is fulfilled at max{t2 − T (s4, n4) + L4, t2}, while

the demand n3 from node 3 is fulfilled at max{t3 − T (s4, n
′
4) + L4, t3}. Since t2 ≤ t3, by Eq. (17),

we have

max{t2 − T (s4, n4) + L4, t2} ≤ max{t3 − T (s4, n
′
4) + L4, t3}. (18)

Then at node 2, the time at which the inventory is ready to fulfill order n2 is

R2 = max{t2 − T (s4, n4) + L4, t2} + L4,2 + L2, (19)

While at node 3, the time at which the inventory is ready to fulfill order n3 is

R3 = max{t3 − T (s4, n
′
4) + L4, t3} + L4,3 + L3.

Combining Eq. (18) and the condition L4,2+L2 ≤ L4,3+L3 yields R2 ≤ R3. Note that Xk(n1−s1) =

[Rk − t]+ and Wk(n1 − s1) = [t−Rk]+ for k = 2, 3. The proof for part (1) is completed by the fact

that if a ≤ b then [a]+ ≤ [b]+ and [a]− ≥ [b]−.

To prove part (2), we consider s2 and s3 such that s2 > s3. Let s′2 = s2 − 1 ≥ s3. Substituting

t2 = t − T (s2, n1 − s1) into Eq. (19) leads to

R2 = max{t − T (s2, n1 − s1) − T (s4, n4) + L4, t − T (s2, n1 − s1)} + L4,2 + L2

= t + max{−T (s2 + s4, n1 − s1) + L4,−T (s2, n1 − s1)}+ L4,2 + L2

= t − min{T (s2 + s4, n1 − s1)− L4, T (s2, n1 − s1)} + L4,2 + L2, (20)

where T (s2, n1 − s1)− T (s4, n4) = T (s2 + s4, n1 − s1) by definition. For the base-stock level s
′
2, let

R
′
2 = t − min{T (s

′
2 + s4, n1 − s1) − L4, T (s

′
2, n1 − s1)}+ L4,2 + L2. (21)

Then, we have R
′
2 > R2 because T (s

′
2 + s4, n1 − s1) < T (s2 + s4, n1 − s1) and T (s

′
2, n1 − s1) <
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T (s2, n1 − s1). Consequently,

X
′
2(n1 − s1) = [R

′
2 − t]+ ≥ [R2 − t]+ = X2(n1 − s1), (22)

and

W
′
2(n1 − s1) = [t − R

′
2]

+ ≤ [t − R2]+ = W2(n1 − s1).

By Eq. (8), we have

W2,1(n1 − s1) = max{0, X3(n1 − s1) + L3,1 − [X2(n1 − s1) + L2,1]}
= X3(n1 − s1) + L3,1 − [X2(n1 − s1) + L2,1], (23)

and

W
′
2,1(n1 − s1) = X3(n1 − s1) + L3,1 − [X

′
2(n1 − s1) + L2,1], (24)

where the second equality in Eq. (23) holds because of the condition L3,1 > L2,1 and the result

obtained in part (1), X3(n1 − s1) > X2(n1 − s1). The similar argument applies to obtain Eq. (24).

Combining Eqs. (22)-(24) yields

W
′
2,1(n1 − s1) < W2,1(n1 − s1).

Finally, it follows by Eq. (7) that L̃1(n1 − s1) remains unchanged, thereby X1(n1) and W1(n1)

remain unchanged by Eqs. (5)-(6). This completes the proof for part (2).

Proof for Theorem 2. Consider a node k ∈ N that serves mk paths leading to the final outlet.

By the proof of Theorem 1, we can use the equally dedicated stocking policy for this node without

changing performance. Thus, the inventory of such a node is split into mk stock piles each dedicated

for a different path. Furthermore, since the transit times are constant, we can further split the

processing facility at such a node into multiple processing facilities each dedicated to a different

stock pile without changing the transit times. Doing this sequentially for all such nodes from

downstream to upstream results in a network with at most one directed path between each pair of

nodes.

We now show that the resulting network has a tree structure by proving that each node in

the resulting network has at most one immediate customer node, and thus it is a multi-level pure

assembly system. We use contradiction. If there is a node with more than one immediate customer
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nodes, then the resulting network must be acyclic because there is a unique final outlet. Clearly,

this is contradictory to the fact that the resulting network has almost one directed path between

each pair of nodes. The proof is now completed.
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