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We consider the multiproduct and multicomponent assemble-to-order (ATO) systems where the replenishment lead times
of the components are stochastic, sequential, and independent of the system state. The component inventories are either
controlled by the continuous-time base-stock policies, namely, a base-stock ATO system, or by the continuous-time batch-
ordering policies, namely, a batch-ordering ATO system. This paper develops the following results: First, for a base-stock
ATO system with a single end product and renewal demand arrivals, we characterize the probability distribution of the
delivery lead time, i.e., the time it takes to satisfy a demand. The exact analysis allows us to provide simple proofs for
the important system properties. Second, for a base-stock ATO system with multiple end products and demand following
independent Poisson processes, we characterize the dependence among the stockout delays of the components. We show that
a multiproduct ATO system can be decomposed into multiple single-product subsystems with each subsystem corresponding
to one product. The analysis allows us to develop two numerical methods to evaluate the performance of the base-stock
ATO systems of medium to large sizes. A hypothetical example inspired by a real-world problem is presented. Third, for
a batch-ordering ATO system, we develop efficient numerical methods for performance evaluation based on Monte Carlo
simulation. Given the sample size, the number of products, and the reorder points, the computational complexity of the
methods is no more than that of sorting a set of real numbers, where the set size equals to the sum of the batch sizes of all
components. Finally, we characterize the impact of the dependence among the components on various ATO systems, and
discuss the limits of the approach.
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1. Introduction
Assemble-to-order (ATO) systems, which keep inventory
only for components and assemble the end products after
demand is realized, have become prevalent in many indus-
tries. An important driver of ATO systems is the short
product life cycle, which substantially increases the risk
of carrying inventories for the finished goods. ATO sys-
tems enable the manufacturers to provide customers with a
large variety of products in a timely fashion without car-
rying expensive finished-goods inventories. Therefore, this
approach has the potential of improving customer service
while at the same time reducing operating expenses. We
refer the reader to Song and Zipkin (2003) for an extensive
discussion of examples and motivations for ATO systems.
Because the optimal inventory policies for the general

ATO systems are not known, simple but effective heuris-
tic policies, e.g., independent base-stock policies or batch-
ordering policies, are often used in practice to manage
the component inventories. In this paper, we focus on

performance analysis and evaluation of ATO systems with
uncapacitated component production, where the inventory
of a component is managed either by a continuous-time,
independent base-stock policy, referred to as continuous-
time base-stock policy hereafter, or by a continuous-
time, independent batch-ordering policy, referred to as
continuous-time batch-ordering policy hereafter.
Significant advances have been made in recent years in

the areas of evaluation and optimization of various ATO
systems under these policies; for reviews see Song and
Zipkin (2003), Xu (2001), Hausman et al. (1998), and
references therein. Most studies of uncapacitated base-
stock ATO systems have been based on the assumption of
independent and identically distributed (i.i.d.) component
replenishment lead times. In this framework, the main chal-
lenge is to characterize the joint probability distribution of
the outstanding orders and to evaluate the distribution of
the maximum of a number of dependent random variables.
This is no small task because, as observed by Song and
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Zipkin (2003, p. 592), “Many real ATO systems contain
hundreds of components and thousands of products” and
hence “such a system poses a considerable computational
burden on existing models and solution methods.”
The performance evaluation of the batch-ordering ATO

systems poses an even more significant challenge than that
of the base-stock ATO systems. Song (2000) demonstrates
that under certain general conditions, the inventory posi-
tion vector of a batch-ordering ATO system has a uniform
equilibrium distribution. Therefore, the performance eval-
uation of a batch-ordering ATO system can be reduced to
those of multiple base-stock systems. Unfortunately, the
number of the base-stock systems associated with a batch-
ordering system is exponential in the number of compo-
nents (details are provided in §5). Thus, it is not clear how
to efficiently evaluate the batch-ordering ATO systems even
if we know how to efficiently evaluate the base-stock ATO
systems.
This paper is related to the literature in the follow-

ing ways: First, instead of assuming i.i.d. lead times, we
model the lead times as stochastic sequential random vari-
ables that are exogenously determined; for a definition, see
Svoronos and Zipkin (1991). In this model, orders for one
type of component never cross (that is, orders are filled
according to the same sequence they have been issued).
Second, instead of the outstanding orders, our analysis
focuses on the component delays defined to be the dif-
ference between the time at which a component becomes
available and the time at which the corresponding demand
arrives; see §3. Indeed, this lead-time model allows us to
develop a methodology that characterizes the dependent
delays among different components. Our objective is to
provide analysis of various ATO systems with stochastic
sequential lead times, and to develop efficient numerical
methods that are able to evaluate the base-stock and batch-
ordering policies in medium to large-size ATO systems.
For these purposes, we first consider, in §3.1, a base-

stock ATO system with a single end product and renewal
demand arrivals. We characterize the joint probability dis-
tribution of the delays of the components, which leads to
an exact expression for the delivery lead-time distribution.
The exact analysis allows us to provide simple proofs for
some important system properties.
Second, in §4.1 we analyze a base-stock ATO sys-

tem with multiple end products and independent Poisson
demand processes. We characterize the correlations among
the delays of the components, and demonstrate that a
multiproduct ATO system can be decomposed into multi-
ple single-product subsystems, with each subsystem corre-
sponding to one product. Stochastic inequalities between
the multiproduct ATO systems and the analogous systems
with independent delays are established.
Based on these analyses, we propose two numerical

methods in §§3.2 and 4.2 for the base-stock ATO sys-
tems to overcome the difficulty of evaluating the maxi-
mum of dependent random variables. The first method is

based on a two-moment approximation, while the second
method is based on the Monte Carlo simulation. The fol-
lowing performance measures are evaluated: the mean and
variance of the delivery lead times, the inventory holding
cost of the components, and the order-based fill rates. A
numerical study, using a hypothetical example inspired by
a real-world problem from the Dell Computer Corporation,
reveals that the simulation-based method is capable of eval-
uating large-size ATO systems, while the method based on
the two-moment approximation is applicable to medium-
size ATO systems.
Third, in §5 we develop efficient methods based on

Monte Carlo simulation to estimate the performance mea-
sures of a batch-ordering system by taking advantage of
the problem structure. The methods are “efficient” in the
sense that the computational times are not exponential in
the number of components, rather, the computational times
are at most proportional to that of sorting a set of real num-
bers, where the set size is the sum of the batch sizes of all
components.
Finally, in §6 we discuss the limits of our approach

by relaxing various assumptions. We also establish some
stochastic inequalities between the ATO systems with
stochastic sequential lead times and the analogous systems
with capacitated component production.

2. The Model
We consider the multiproduct ATO systems with stochas-
tic demand and stochastic sequential lead time. The con-
cept of stochastic sequential lead time, that is, the so-called
“transit time,” is formally defined by Svoronos and Zipkin
(1991). The transit time is an exogenously determined ran-
dom variable satisfying the following two assumptions of
independence: (1) the transit time is independent of the sys-
tem state (e.g., demand and order placement), and (2) the
transit time is independent across components. Under these
assumptions, order crossing is not allowed. Thus, unlike
the i.i.d. lead times, Palm’s theorem (Palm 1938) cannot
be applied to the systems with the transit times. As argued
by Svoronos and Zipkin (1991), the transit time may be
more realistic than the i.i.d. lead time for modeling replen-
ishment lead times from the suppliers in some real-world
applications. This is true especially when the manufactur-
ing and the transportation processes are processing orders
for many other customers so that the orders placed by the
customers in our ATO systems are only negligible portions
of the total workload. We refer the reader to Zipkin (2000)
for more discussion of this assumption. As we will see
later, the second independent condition is not essential for
the analysis.
The component inventories are managed either by

the base-stock policies or the batch-ordering policies.
A continuous-time batch-ordering policy, i.e., an �r� nQ�
policy, works as follows: Whenever the inventory position
(net inventory plus inventory on order) drops to or below
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the reorder point r , an order of size nQ is placed to raise
the inventory position up to the smallest integer above r .
Clearly, a base-stock policy is a special case of the batch-
ordering policies with a batch size Q= 1. Because we con-
sider unit demand, an �r� nQ� policy reduces to an �r�Q�
policy. If a batch-ordering policy is used for a component,
we assume that the supplier always delivers the orders in
full, i.e., no split orders. This assumption is reasonable if
the supplier keeps inventory in the integer multiples of the
batch size.
We assume that the assembly time is negligible com-

pared to the component replenishment lead times. Demand
is satisfied on a first-come-first-serve (FCFS) basis when-
ever all the required components become available. For any
demand that cannot be satisfied immediately, we assume
that it is fully backlogged. When a demand arrives and
some of its required components are in stock but others are
not, we either ship the in-stock components or put them
aside as “committed stock” (we point out that the same
assumption is made by Song 2002).
Let � be the set of components with size �� �, and � be

the set of products with size �� �. Following the convention,
we define the following notations:
• L̄ = �Lj� j ∈ ��: stochastic replenishment lead times

with known probability distributions.
• r̄ = �rj � j ∈ ��: reorder points of the components.
• �Q= �Qj� j ∈ ��: batch sizes of the components.
• s̄ = �sj � j ∈ ��: base-stock levels of the components.

If the base-stock policy is used for a component j ∈ � ,
then sj = rj + 1.

• 
̄= �
i� i ∈��: demand arrival rates for the products.
• h̄ = �hj� j ∈ ��: inventory holding costs per unit of

time per unit of the components.
• � = �i� i ∈ ��: penalty costs per unit of time per

unit of the products.
• A = �aij �: a matrix characterizing the bill of materi-

als (BOM) between the products and the components, i.e.,
assembling one unit of product i requires aij units of com-
ponent j . We assume that aij either equals one when compo-
nent j is required by product i, or zero otherwise. Extension
to the BOM matrix with elements choosing any nonnega-
tive integers is discussed in §6. Finally, we assume that a
product requires at least one component, and a component
is required by at least one product.
• �j : set of products that require component j , �j =

�i ∈� � aij = 1�.
• � i: set of components required by product i, � i = �j ∈

� � aij = 1�.
We further define the following performance measures:
• �X = �Xi� i ∈ ��: delivery lead times of the products,

i.e., the time that the demand of a product waits to be
satisfied.
• 	W = �Wj� j ∈ ��: waiting times of the components in

inventory for the corresponding demand to arrive and other
required components of the demand to be replenished.

Finally, we define the cost function to be the sum of
the long-run average penalty costs of all products and the
long-run average inventory holding costs of all components,
that is,

∑
i∈�

iE�Xi�+∑
j∈�

hjE�Wj��

3. Single-Product Base-Stock Systems
In this section, we consider ATO systems with one final
product, that is, �� � = 1. We drop the superscript i
accordingly. Following convention, we call these systems
single-product assembly systems. The inventory of each
component is managed by a continuous-time base-stock
policy. The demand arrivals follow a renewal process,
where 
 is the demand arrival rate. We first provide a prob-
abilistic analysis of the system performances in §3.1 and
then present numerical methods in §3.2.

3.1. Performance Analysis

The analysis is based on the following key observation:
Suppose that a demand arrives at time t; then the corre-
sponding order of a component j ∈ � that satisfies this
demand is placed at t − T �sj�, where T �sj� is determined
by starting at time t, counting backwards until the number
of demand arrivals reaches sj . That is, T �sj� =

∑sj
k=1 Vk,

where Vk is the demand interarrival time, with k being
a backward index of the demand arrivals (see Figure1).
This is true because an order for the jth component is
placed whenever a demand arrives. As observed by Axsater
(1993), the order will be used to satisfy the sj th demand in
the future. Thus, the difference between the time at which
an order of the component j is placed and the time at which
the target demand arrives is exactly the sum of sj interar-
rival times. Due to the replenishment lead time, the order
placed at time t− T �sj� will arrive at time t− T �sj�+Lj .
Therefore, the delay of component j is Lj − T �sj�.
This observation differs from that of Axsater (1993),

because at the time of a demand arrival, we look back-
ward to identify the time at which the corresponding order
was placed that satisfies this demand (namely, the backward
method), while Axsater (1993) looks forward to identify the

Figure 1. T �sj� vs. T �sk� in a single-product assembly
system with two components.

T(sk)

t –T(sj)

T (sj)T(sk –sj)

V2 V1
t



Zhao and Simchi-Levi: Performance Analysis and Evaluation of Assemble-to-Order Systems
Operations Research 54(4), pp. 706–724, © 2006 INFORMS 709

time at which the corresponding demand will arrive that is
satisfied by the order triggered by the current demand. The
difference is important in analyzing assembly systems. For
instance, consider an ATO system with two components,
j and k. Without loss of generality, assume that sj � sk.
Suppose that a demand arrives at time t; then the corre-
sponding orders of the components j and k that satisfy
this demand are placed at time t − T �sj� and t − T �sk�,
respectively. It is easily seen that T �sj� overlaps with T �sk�
over the time period �t − T �sj�� t�, and therefore T �sk� =
T �sj� + T �sk − sj� (see Figure 1 for a visual aid). The
dependence among the arrival times t−T �sj�+Lj , j ∈ � , is
quite intuitive: If the interarrival times are short for recent
demands, and as a result T �sj� is small for all j ∈ � , then
all components are likely to be out of stock.
It is straightforward to extend the observation to sys-

tems with an arbitrary number of components. We index the
components in the nondecreasing order of their base-stock
levels. Given any sequence of t1 � t2 � · · ·� t�� �, the joint
probability density function of T �sj�, j ∈ � , is given by

P
{
T �s1�= t1� T �s2�= t2� � � � � T �s�� ��= t�� �

}
= P�T �s1�= t1�P�T �s2 − s1�= t2 − t1� · · ·

·P{T �s�� � − s�� �−1�= t�� � − t�� �−1
}
� (1)

For any other sequences of t1� t2� � � � � t�� �, the joint prob-
ability density function of T �sj�, j ∈ � , equals zero. For
simplicity, we denote the joint probability density function
in Equation (1) as P�t1� t2� � � � � t�� ��. A direct application of
Equation (1) is the joint probability density function of the
delays of all components,

P
{
L1−T �s1�=�1�L2−T �s2�=�2�����L�� �−T �s�� ��=��� �

}
=P

(
L1−�1�L2−�2�����L�� �−��� �

)
� (2)

where Lj , j ∈ � , are independent random variables.
By Equation (1), we can characterize the delivery lead-

time distribution as follows. For the demand arriving at
time t, the latest replenishment time of the components can
be expressed as maxj∈��t−T �sj�+Lj�. Hence, the delivery
lead time for this demand equals

X =
[
max
j∈�

�Lj − T �sj��
]+
� (3)

The waiting time of the component k, k ∈ � , equals the
maximum of t +maxj �Lj − T �sj�� and t subtracting t −
T �sk�+Lk, which is

Wk = t+
[
max
j
�Lj − T �sj��

]+ − �t− T �sk�+Lk�

=
[
max
j
�Lj − T �sj��

]+ −Lk + T �sk�

=X−Lk + T �sk�� (4)

Note that X is correlated with Lk − T �sk�.

We now derive the probability distribution for the deliv-
ery lead time, X:

P�X=0�=P
{
max
j∈�

�Lj−T �sj���0
}
�

P�X���=P
{
max
j∈�

�Lj−T �sj����
}
� (5)

where � > 0 is the target service time.

P
{
max
j∈�

�Lj − T �sj��� �
}
= P�Lj − T �sj�� �� j ∈ ��

= P�T �sj�� Lj − �� j ∈ ��

= P�T �sj�� �Lj − ��+� j ∈ ���
(6)

The last equality is due to the fact that T �sj�, j ∈ � , is
always greater than or equal to zero. Conditioning on L̄=
l̄= �l1� l2� � � � � l�� �� and utilizing Equation (1),

P
{
T �sj�� �lj − ��+� j ∈ �

}
=
∫ �

�l1−��+

∫ �

�l2−��+
···

∫ �

�l�� �−��+
P�t1�t2�����t�� ��dt�� � ···dt2dt1�

(7)

It is easy to see that the dependence among components
has an impact on the fill rates because

P
{
T �sj�� �lj − ��+� j ∈ �

}
= P

{
T �s1�� �l1 − ��+� T �s1�+ T �s2 − s1�

� �l2 − ��+� � � � � T �s1�+ T �s2 − s1�

+ · · ·+ T �s�� � − s�� �−1�� �l�� � − ��+
}

(8)

is generally not equal to
∏

j∈� P�T �sj�� �lj −��+� (the fill
rate obtained by assuming that the delays of all components
are independent). Indeed, these two fill rates satisfy the
following inequality.

Proposition 3.1. For any l̄ and � � 0,

P�T �sj���lj−��+� j ∈���∏
j∈�

P�T �sj���lj−��+�� (9)

That is, the delivery lead time in the single-product assem-
bly system with dependent component delays is stochasti-
cally smaller than the delivery lead time in an analogous
system with independent component delays.

Note that we use “smaller than” here in its weak form,
which means “smaller than or equal to.” The intuition
behind Proposition 3.1 is that the random component
delays, Lj−T �sj�, j ∈ � , tend to “hang on” together due to
the common interarrival times shared by T �sj�, j ∈ � . We
omit the proof of this proposition because a more general
result is proven in §4.1 for the multiproduct ATO systems.
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The probability defined in Equation (8) is related to a
generalized finite horizon nonruin probability (see, e.g.,
De Kok 2003 for the definition). The computation of this
probability is discussed in detail in §3.2. It is easily seen
from Equation (8) that the second independent condition
of the “transit time,” i.e., the replenishment lead times
are independent across components, is not necessary for
the analysis. Equation (8) holds in the cases of dependent
replenishment lead times as long as the lead times are inde-
pendent of the system state. For simplicity, we still assume
that the second independent condition holds for the rest of
the paper unless otherwise mentioned.
The cost function of the single-product assembly systems

can be written as

E�X�+∑
j∈�

hjE�Wj�

=
(
+∑

j

hj

)
E�X�−∑

j

hjE�Lj�+
∑
j

hjE�T �sj��� (10)

Because
∑

j hjE�Lj� is a constant, the cost function can be
simplified as

(
 +∑

j

hj

)
E�X�+∑

j

hjsj
/

� (11)

Our analysis is related to that of Glasserman and Wang
(1998), which studies ATO systems with capacitated sup-
pliers. In the proof of their Theorem 1, the delay of a
certain component is derived in a way similar to that of
this paper. However, the focus of Glasserman and Wang
(1998) is on quantifying the limiting trade-off between the
inventory levels and the delivery lead time at high fill rates,
rather than the dependence structure of the delays among
components. For the special case of constant lead times
and Poisson demand process, Equation (8) shows that as
� → �, the fill rate tends to 1 for all base-stock levels.
Furthermore, the tail distribution of the delivery lead time
is Erlang if � is large enough so that �lj −��+ > 0 for only
one j ∈ � .
We now provide simple proofs for the following system

properties.

Proposition 3.2. In the single-product assembly systems,
(1) If we keep system parameters unchanged and

increase �� �, the cost function is nondecreasing.
(2) For two ATO systems, if Lj �st L

′
j for a certain

j ∈ � while everything else is identical, then P�X � ���
P�X ′ � ��, where �st denotes the stochastic ordering and
X (X ′) is the corresponding delivery lead time of Lj (L

′
j ,

respectively).
(3) For two ATO systems, if Lj �cx L

′
j for a certain

j ∈ � while everything else is identical, then E�X� �

E�X ′�, where �cx denotes the convex ordering and E�·� is
the expectation with respect to both L̄ and T �sk�, k ∈ � .

Proof. (1) First, note that the expected waiting time of any
additional component is always nonnegative. Thus, by
Equation (10), we only need to show that E�X� is nonde-
creasing as �� � increases, which is straightforward because
as �� � increases, X = �maxj∈��Lj−T �sj���

+ is nondecreas-
ing for any realization of L̄ and T �sj�, j ∈ � .
(2) Note that P�X � � � l̄�= P�T �sj� � �lj − ��+ ∀ j ∈

�� (by Equations (5)–(6)) is a nonincreasing function of lj
∀ j ∈ � . Hence, Lj �st L

′
j and the definition of the stochas-

tic ordering (Kulkarni 1995) immediately imply −P�X �

���−P�X ′ � ��.
(3) Note that �maxj∈��lj−T �sj���

+ is a convex function
of lj , j ∈ � , for any realization of T �sj�, j ∈ � . Because
Lj is independent of T �sk�, k ∈ � , Equation (3) and the def-
inition of convex ordering immediately imply the requisite
result. �

Intuitively, this proposition demonstrates that the larger
the number of components, the higher the total cost; the
larger the stochastic replenishment lead times, the smaller
the fill rates; and the more stochastically variable the
replenishment lead times, the longer the expected delivery
time. The first property is shown by Kumar (1989) in a
model of safety time instead of safety stock. In a model
with i.i.d. replenishment lead times, Song and Yao (2002)
provides a different proof for the third property under the
increasing convex ordering assumption.

3.2. Performance Evaluation

To evaluate the system performances, we rewrite the fill
rate in Equation (8) as follows:

P

{
Y1 � y1� Y1 + Y2 � y2� � � � �

�� �∑
j=1

Yj � y�� �

}
� (12)

where Y1 = T �s1�, Yj = T �sj − sj−1�, j > 1, and yj =
�lj − ��+, j ∈ � . Comparing to the finite horizon nonruin
probability (see, e.g., Asmussen 2000), the probability in
Equation (12) has � rather than � for every event.
To calculate the finite horizon nonruin probability, De

Vylder and Goovaerts (1988) develop a recursion scheme
by conditioning on Y1� Y2� � � � consecutively. De Kok (2003)
develops a fast recursive algorithm based on a two-moment
approximation for �� �� 20. For the probability defined in
Equation (12), an exact expression can be obtained through
a recursive algorithm; see Appendix 1 for details. However,
as �� � increases, the time it takes to derive the exact expres-
sion grows very fast even for Poisson demand processes.
Further observing that we need to consider all possible
values of the lead times to obtain the fill rates, an exact
calculation is time consuming for large-scale systems, e.g.,
systems with hundreds of components. To achieve numer-
ical efficiency, we propose the following methods, which
are scalable to evaluate large-size single-product assembly
systems with base-stock policies and stochastic lead times.
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The first method is based on Clark (1961), which devel-
ops an approximate algorithm to calculate the mean and
variance of the maximum of dependent random variables.
Because the algorithm only uses the mean and covariance
of the dependent random variables, it is a two-moment
approximation. Based on the assumption of transit time and
Equation (1), the covariance of Lj − T �sj�, j ∈ � , can be
calculated as follows:

Cov�Lj − T �sj��Lk − T �sk��

=
{
Var�T �sj�� if sj � sk�

Var�T �sk�� otherwise�
(13)

Once the mean and variance of maxj∈��Lj − T �sj��
are obtained by Clark’s algorithm, we can obtain the
approximations of the mean and variance of X by fitting
maxj∈��Lj − T �sj�� into a normal distribution. The com-
putational complexity of this method is O��� �2� because
both the calculation of the covariance and Clark’s method
require a computing time proportional to �� �2.
The second method is based on Monte Carlo simula-

tion (Law and Kelton 1991). To obtain a sample of X, we
just need to generate a sample of the independent random
variables T �s1�, T �sj − sj−1�, 1 < j � �� � and Lj , j ∈ � ,
then utilize Equation (3). The computational complexity
is O��� �� if we fix the sample size. Thus, for relatively
small �� �, Clark’s method may be more efficient, but for
large �� �, the simulation-based method is faster.
To validate our approach, we use the simulation-based

method to evaluate the expected backorders for the test
example in Song and Yao (2002, p. 897). Because they
assume i.i.d. replenishment lead times while we assume
transit times, only the cases of deterministic replenishment
lead times are comparable. Using a sample size of 40,000,
our computational study (not reported here) shows that
the results generated by the simulation-based method accu-
rately match those of Song and Yao.
To test the accuracy of the method based on Clark’s

approximation, we conduct a numerical study to compare
the methods based on Clark’s approximation and the sim-
ulation. We consider the single-product assembly systems
with �� � = 20�80; Poisson demand process, and 
= 1. We
assume that the replenishment lead times follow Erlang dis-
tribution because it is a special case of both gamma and
continuous phase-type (CPH) distributions, which are often
used in practice to approximate lead times (Zipkin 2000).
We also point out that Erlang distribution is assumed in the
numerical studies of Song and Yao (2002) and Lu et al.
(2003).
To generate test instances for a certain �� �, we first fix

the lead-time distributions and then vary base-stock levels
according to s̄ = �'× s̄′�, where s̄′ is the default base-stock
level, and ' ∈ �0�25�0�5�0�75�1�1�5�2�3�4�5�6�7�8�. For
our randomly generated lead-time distributions and the
default base-stock levels, see http://zhao.rutgers.edu/. In the

Figure 2. Accuracy of Clark’s (1961) method in esti-
mating the expected delivery lead time for
single-product assembly systems.
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simulation, we set sample size equal to 40,000 for all test
examples. The running times of both methods for all test
examples are in seconds on a Pentium 1.67 GHZ laptop.
Figure 2 demonstrates that the method based on Clark’s

approximation is reasonably accurate in the absolute value
of the expected delivery lead time when �� � = 20. However,
it may be subject to a large percentage error (defined as
the absolute difference of the computed E�X�s between
these two methods divided by the E�X� estimated by the
simulation-based method) when ' is large, i.e., when E�X�
is small. As �� � increases to 80, both the absolute error and
percentage error increase considerably, which implies that
the method based on Clark’s approximation may only be
appropriate for small to medium-size problems. Figure 3
shows that the method based on Clark’s approximation has
a relatively large error in calculating the standard deviation
of the delivery lead times. However, the method is generally
quite accurate in terms of the fill rate (� = 0). Except, in
one test example, we observe that the difference of the fill
rates between Clark’s approximation and the simulation is
as large as 8%.

4. Multiple-Product Base-Stock Systems
In this section, we consider the multiproduct ATO sys-
tems with the base-stock policies and demands following
independent Poisson processes. We first present the decom-
position and characterize the correlations of the compo-
nent delays in §4.1, and then propose numerical methods
in §4.2.

4.1. Performance Analysis

The analysis is based on the backward method (see §3.1).
Assuming that a demand of product type i ∈ � arrives at
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Figure 3. Accuracy of Clark’s (1961) method in esti-
mating the standard deviation of the delivery
lead time and the fill rate for single-product
assembly systems.
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time t, then the corresponding order of a component j ∈ � i

that satisfies this demand is placed at time t−T i
j �sj�, where

T i
j �sj� is determined by starting at time t, counting back-
ward demand arrivals of all products that require compo-
nent j until the total number of arrivals reaches sj . This
observation holds as a result of the noncrossing property
of the stochastic sequential lead times and the “commit-
ted stock” assumption (§2). Due to the replenishment lead
time, the order placed at time t− T i

j �sj� will arrive at time
t− T i

j �sj�+Lj .
For each product i ∈ � , given the joint probability den-

sity function of T i
j �sj� ∀ j ∈ � i, we can apply Equations (3)

and (4) to determine the delivery lead time, Xi, and the
component waiting times Wi

j , j ∈ � i (defined to be the wait-
ing time of the component j if it satisfies a demand of
product i), as follows:

Xi =
[
max
j∈� i

�Lj − T i
j �sj��

]+
� (14)

Wi
j =Xi −Lj + T i

j �sj�� (15)

Clearly, Wi
j may have different probability distributions if

the component j satisfies the demand of different prod-
ucts. Conditioning on L̄= l̄= �l1� l2� � � � � l�� �� and utilizing
Equation (14) yields

P�Xi
� � � l̄�= P�T i

j �sj�� �lj − ��+� j ∈ � i�� (16)

where � � 0 is the target service time. To characterize the
impact of the dependence among the component delays, we
utilize the concept of “associated” random variables.
Consider random variables Y1� Y2� � � � � Yn, and denote

vector �Y = �Y1� Y2� � � � � Yn�. The following definition is due

to Esary et al. (1967); see Tong (1980) and Shaked and
Shanthikumar (1994) for reviews.

Definition 4.1. The set of random variables �Y1� Y2� � � � �
Yn� is associated, or the random variables Y1� Y2� � � � � Yn are
associated, if

Cov�f ��Y �� g��Y ��� 0� (17)

or equivalently,

E�f ��Y �g��Y ���E�f ��Y ��E�g��Y �� (18)

for all nondecreasing real functions f , g for which E�f ��Y ��,
E�g��Y ��, and E�f ��Y �g��Y �� exist.
Lemma 4.2. Associated random variables have the follow-
ing properties:
(1) Any subset of associated random variables is asso-

ciated.
(2) If two sets of associated random variables are inde-

pendent of each other, their union is a set of associated
random variables.
(3) Independent random variables are associated.
(4) Nondecreasing (or nonincreasing) functions of

associated random variables are associated.
(5) Let Y1� Y2� � � � � Yn be associated random variables;

then

P�Y1 � y1� Y2 � y2� � � � � Yn � yn��
n∏

k=1
P�Yk � yk�

and

P�Y1 � y1� Y2 � y2� � � � � Yn � yn��
n∏

k=1
P�Yk � yk�

for all �y1� y2� � � � � yn� ∈Rn.

We refer to Esary et al. (1967) and Tong (1980) for
proofs. Intuitively, Part (5) of Lemma 4.2 means that asso-
ciate random variables are dependent in such a way that
they tend to “hang on” together.
The following proposition characterizes the impact of the

dependence among the component delays on the multiprod-
uct ATO systems. The proof involves establishing that the
set of random variables �T i

j �sj�� j ∈ � i� is associated for
each product i.

Proposition 4.3. In a multiproduct ATO system, for any l̄
and � � 0,

P�T i
j �sj�� �lj − ��+� j ∈ � i��

∏
j∈� i

P �T i
j �sj�� �lj − ��+�

for all i ∈� � (19)

That is, the delivery lead time of each product in the mul-
tiproduct ATO systems with dependent component delays
is stochastically smaller than the delivery lead time of the
same product in an analogous system with independent
component delays.
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Proof. See Appendix 4 for the details. �

Equations (14) and (15) imply that the multiproduct ATO
system can be decomposed into �� � single-product sub-
systems with each subsystem corresponding to a product
i ∈� and its component set � i. Each single-product sub-
system can be characterized separately. It is straightforward
to show that statements (2) and (3) of Proposition 3.2 apply
to each single-product subsystem defined here. However, it
is important to note that these single-product subsystems
are not identical to the single-product assembly systems of
§3 because T i

j �sj�, j ∈ � i, are dependent in a different way
than T �sj�, j ∈ � . It is easily seen that T i

j �sj� is associated
with the superposition of the demand processes of all prod-
ucts that require component j , as well as the arrival time, t,
of product i. The random variables, T i

j �sj�, are dependent
across components j ∈ � i because of the common demand
process of product i. It is not yet clear how to character-
ize the joint probability density function of T i

j �sj�, j ∈ � i,
because a component j ∈ � i may be required by other prod-
ucts. Thus, we do not attempt to derive the joint probability
density function in this paper, but instead, we characterize
the covariance matrix of T i

j �sj�, j ∈ � i. For this purpose,
we first point out the following facts:
• Poisson arrival processes are reversible in the sense

that starting at any time t ∈ �−��+��, the arrival process
counting backward is statistically identical to the arrival
process counting forward (see, e.g., Kulkarni 1995, Theo-
rem 8.12 and Corollary 8.2).
• The forward and backward counting processes are

independent of the starting time t.
• The forward and backward counting processes are still

Poisson.
Because we assume that the demand follows indepen-

dent Poisson processes, T i
j �sj� is independent of the starting

time t and therefore the product type i. Hence, we can sim-
plify the notation of T i

j �sj� by Tj�sj�. Finally, because the
covariance of Tj�sj� and Tk�sk� is the same for all products
i ∈ �j ∩�k, we focus on the covariance matrix of Tj�sj�,
j ∈ � .
Given two components j and , and their base-stock lev-

els sj and s , we can calculate the covariance of Tj�sj� and
T�s� by considering the following four cases:
Case 1. �j ∩� =�.
Case 2. �j =� .
Case 3. � ⊂�j .
Case 4. �j ∩� �= �, �j �⊂� , and � �⊂�j .
It is easy to see that Cov�Tj�sj�� T�s��= 0 in the first

case. The second case reduces to the single-product sys-
tems. By Equation (13), Cov�Tj�sj�� T�s�� = Var�T�s��
if sj � s , or Var�Tj�sj�� otherwise.
To calculate the covariance for the third case, we denote

the common demand process for both components to be
process 1, and the independent demand process for com-
ponent j only to be process 2. Define Ul�m� to be the
sum of m interarrival times of the process l= 1�2, and .l

to be the arrival rate of the process l = 1�2. Conditioning
on the common demand process 1, let one realization of
U1�1��U1�2�� � � � be ū= �u1� u2� � � ��, and v̄ be v1 = u1� v2 =
u2 − u1� � � � � where P�V = v� = .1e

−.1v. For simplicity,
denote the joint probability density function of the interar-
rival times of the process 1, �V , to be f1�v̄�; then,
Cov�Tj�sj�� T�s��=

∫
E�Tj�sj�−E�Tj�sj�� � v̄�
× �us −E�T�s���f1�v̄�dv̄� (20)

To calculate E�Tj�sj�−E�Tj�sj�� � v̄�, we only need to con-
dition on v1� v2� � � � � vsj because Tj�sj�� usj .
For simplicity, we denote T = Tj�sj�; then,

T = usj on the event �U2�1� > usj �

T =U2�1� on the event �usj−1 <U2�1� < usj �

T = usj−1 on the event
�U2�1� < usj−1�∩ �U2�2� > usj−1�

· · · · · ·
T =U2�sj − 1� on the event �u1 <U2�sj − 1� < u2�

T = u1 on the event
�U2�sj − 1� < u1�∩ �U2�sj� > u1�

T =U2�sj� on the event �U2�sj� < u1��

Because we assume Poisson processes,

E�T −E�T � � v̄�
= �usj −E�T ��e

−.2usj +
∫ usj

usj−1
�t−E�T ��.2e

−.2t dt

+ �usj−1 −E�T ��e
−.2usj−1

.2usj−1
1!

+ · · · +
∫ usj−k

usj−k−1
�t−E�T ��.2e

−.2t �.2t�
k

k! dt

+ �usj−k−1 −E�T ��e
−.2usj−k−1

�.2usj−k−1�
k+1

�k+ 1�!

+ · · · +
∫ u2

u1

�t−E�T ��.2e
−.2t �.2t�

sj−2

�sj − 2�! dt

+ �u1 −E�T ��e−.2u1
�.2u1�

sj−1

�sj − 1�!

+
∫ u1

0
�t−E�T ��.2e

−.2t �.2t�
sj−1

�sj − 1�! dt�

After tedious integration and a combination of common
terms, we finally arrive at

E�T −E�T � � v̄�
= sj

.2
−E�T �− 1

.2
�P�U2�1�� usj �

+P�U2�2�� usj−1�+ · · ·+P�U2�sj�� u1��� (21)
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where E�T �= sj/�.1 +.2�. Thus, the covariance

Cov�Tj�sj�� T�s��

=− 1
.2

[sj−1∑
k=0

∫
P�U2�k+ 1�� usj−k��us −E�T�s���

×P�U1�sj − k�= usj−k�U1�s�= us �dusj−k dus

]
� (22)

To calculate the covariance for the fourth case, we define
the common demand process for both components j and 
to be process 1, the independent process for component j to
be process 2, and the independent process for component 
to be process 3. Let .l be the arrival rate of the process
l = 1�2�3. Conditioning on the interarrival times, �V = v̄,
of the common demand process, and following a similar
calculation as in the third case, we obtain

Cov�Tj�sj�� T�s��

=
∫
E�Tj�sj�−E�Tj�sj�� � v̄�

×E�T�s�−E�T�s�� � v̄�f1�v̄�dv̄

= 1
.2.3

∫
�P�U2�1�� usj �+ · · ·+P�U2�sj�� u1��

× �P�U3�1�� us �+ · · ·+P�U3�s�� u1��× f1�v̄�dv̄

− s

.2

(
1
.3

− 1
.1 +.3

)∫
�P�U2�1�� usj �

+· · ·+P�U2�sj�� u1�� f1�v̄�dv̄� (23)

For the exact expressions of Equations (22) and (23), see
Appendix 2.
Define

P i
j =

aij

i∑

k∈� akj 
k

to be the probability that the component j satisfies a de-
mand of product i; the cost function of the multiproduct
ATO systems can be written as follows:

∑
i∈�

iE�Xi�+ ∑
j∈� � i∈�

P i
j hjE�W

i
j �

=∑
i∈�

(
i +∑

j∈�
P i
j hj

)
E�Xi�−∑

j∈�
hjE�Lj�

+∑
j∈�

hjE�Tj�sj��� (24)

The equality comes from the fact that
∑

i∈� P i
j = 1 ∀ j ∈ � .

The reason that we take the weighted average P i
j , i ∈ � ,

for the holding cost of the component j ∈ � , is that the

expected waiting time of the component j may vary if the
component satisfies a demand of different products (Equa-
tion 14). Thus, the long-run average inventory holding cost
of a component is the weighted average of the counter-
parts of this component across all products that require the
component.

4.2. Performance Evaluation

In this section, we develop numerical methods to evaluate
the performances of the multiproduct ATO systems with
the base-stock policies. Similarly to the single-product sys-
tems, the first method is based on Clark’s (1961) approxi-
mation, while the second method is based on Monte Carlo
simulation.
The method based on Clark’s approximation works as

follows: Given any two components j and , we first deter-
mine which case applies, and calculate .l, l = 1�2�3.
Then, using the analytic expressions derived in §4.1 and
Appendix 2, we calculate the covariances among Tj�sj�,
j ∈ � . Lastly, we apply Clark’s approximation to evaluate
the performances for each single-product subsystem i ∈��
as in §3.2. The computational effort is at most proportional
to C2

�� � × ��� �+ s5max�+�� �× �� �2, where smax =maxj∈��sj�
and C2

�� � is defined in Appendix 2. Observe that determin-
ing a single covariance of Case 4 requires a computing time
proportional to s5max, the method can only handle problems
with small smax.
The second method is based on Monte Carlo simula-

tion. To obtain a sample of all Xi, i ∈ � , simultaneously,
we sample smax many inter arrival times independently for
each product. Then, for each component j ∈ � , we super-
impose the arrival processes of all products that require it,
and count the time of sj th arrival to obtain a sample for
Tj�sj�. Finally, we generate a sample of Lj , j ∈ � , and uti-
lize Equation (14) to obtain a sample of Xi ∀ i ∈� . Thus,
the simulation-based method has a computational com-
plexity at most proportional to smax��� � + �� ���� � − 1��+
�� ��� � because sampling interarrival times takes at most
O��� �smax�, and the superposition and counting processes
take at most O��� ���� � − 1�smax�.
To summarize, the computational effort of both methods

is linear in the number of products. The method based on
Clark’s approximation may be more efficient when �� � and
smax are small; but the simulation-based method is faster
when either �� � or smax is large. To validate our approach,
we study the personal computer example of Song (2002).
In this example, there are six components and six demand
types (products):
• Components are (1) built-in zip drive, (2) standard

hard drive, (3) high-profile hard drive, (4) DVD-Rom drive,
(5) standard processor, and (6) high-profile processor.
• Demand types result from different combinations of

these components, i.e., (1) �2�5�, (2) �3�5�, (3) �1�2�5�,
(4) �1�3�6�, (5) �1�3�4�5�, and (6) �1�3�4�6�.
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The lead times of all components are deterministic. The
BOM matrix A equals




Component �1� �2� �3� �4� �5� �6�

Product �1� 0 1 0 0 1 0

�2� 0 0 1 0 1 0

�3� 1 1 0 0 1 0

�4� 1 0 1 0 0 1

�5� 1 0 1 1 1 0

�6� 1 0 1 1 0 1




�

We refer to Song (2002) for more details on the exam-
ple. Our numerical study (not reported here) shows that the
results of the simulation-based method accurately match
those of Song (2002), which are generated by an exact
method.
To test the accuracy of the method based on Clark’s

approximation, we extend the numerical study of this exam-
ple to include stochastic lead times. We assume the same
BOM matrix as in the previous example. Further, we
assume that all lead times follow Erlang distribution with
randomly generated 4̄ = �3�96�3�08�8�86�2�6�4�81�2�63�
and n̄= �7�5�11�5�7�5� (4 and n are the parameters for
an Erlang distribution; see Zipkin 2000 for the definitions).
Let the demand arrival rates 
̄ = �1�4�1�5�1�2�0�5�. We
calculate the mean and the standard deviation of the deliv-
ery lead time, as well as the fill rate (at � = 0) for each
base-stock level s̄ = �'× s̄′�, given s̄′ = �4�2�6�2�8�2� to
be a default base-stock level (randomly chosen) and ' ∈
�0�25�0�5�0�75�1�1�5�2�2�5�3�3�5�4�. In the simulation,
the sample size is set to 10,000 for all test examples. The
running times of both methods for all test examples are in
seconds on a Pentium 1.67 GHZ laptop.
In Figures 4, 5, and 6, we show the mean and standard

deviation of the delivery lead time and the fill rate as a
function of ' for each product. As in the single-product
examples, these figures illustrate that the method based on
Clark’s approximation is quite accurate in terms of the
expected delivery lead times. However, for the standard
deviation of the delivery lead times, the approximation may
be subject to large errors. We also observe that the accuracy
varies across different products, e.g., the approximation is
more accurate for product 2 than products 5 and 6 in terms
of the standard deviation of the delivery lead time and the
fill rate. To specify the conditions under which the method
based on Clark’s approximation works well, we identify the
following two sources of errors: first, Clark’s two-moment
approximation for calculating the mean and standard devi-
ation of maxj∈� i �Lj − Tj�sj��; second, the normal approx-
imation of the maximum given its mean and standard
deviation. Clark’s approximation is originally designed for
normal random variables; thus, its accuracy can be poor if it
is applied to random variables with other distributions, e.g.,
exponential or uniform. Consequently, the method based on

Figure 4. Accuracy of Clark’s (1961) method in esti-
mating the expected delivery lead time for
multiproduct ATO systems.
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Clark’s approximation is, in general, more accurate if both
the lead times Lj and the corresponding order times Tj�sj�
have closer to normal distributions, e.g., the distributions
of Lj and Tj�sj� have larger n in our specific settings.
The numerical results demonstrate that the method based

on Clark’s two-moment approximation may not be reliably
accurate. For other methods of approximating the multivari-
ate probability distributions in ATO systems, we refer the
reader to Song and Yao (2002) and Dayanik et al. (2003).
For ATO systems with i.i.d. lead times, Lu et al. (2003)

and Lu and Song (2005) provide different methods. Lu
et al. (2003) derive the joint probability distribution as well
as the first two moments of the outstanding orders, which
allows the authors to develop numerical methods based on
the factorized normal approximation and pairwise partition

Figure 5. Accuracy of Clark’s (1961) method in esti-
mating the standard deviation of the delivery
lead time for multiproduct ATO systems.
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Figure 6. Accuracy of Clark’s (1961) method in esti-
mating the fill rate for multiproduct ATO
systems.
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of the set of components. Lu and Song (2005) develop
bounds for the order-based performance measures by the
item-based ones. This is done by constructing appropriate
independent random variables to replace the dependent out-
standing orders and by developing bounds for their maxi-
mum. This method is different from our approach because
Clark’s method directly approximates the first two moments
of the maximum of the dependent random variables. It is
perhaps worth mentioning that in the special case of con-
stant lead times, the methods developed under the i.i.d.
lead-time assumption can also be applied. In particular,
Song (1998, 2002) develops exact methods to calculate the
order-based fill rates and backorders for ATO systems with
constant lead times.
Finally, to test the scalability of the numerical meth-

ods, we study a hypothetical example inspired by a real-
world problem: the Dimension 2400 Pentium model of Dell
Computer Corporation. Because the computer model is tar-
geted at individual customers, it is reasonable to assume
unit demand. The model has 27 categories of configurable
options, with nine of them being software related (for
detailed information on this model, see the website print-
out at zhao.rutgers.edu). In the 18 nonsoftware related cat-
egories, each option refers to either a component or not
choosing any component in a category. Customer order
specifies at most one unit of one component from each cate-
gory. In these categories, some components may be shipped
after the system is shipped, e.g., Dell W1700 LCD TV. For
simplicity, we ignore these components. We also ignore six
seemingly unpopular categories, e.g., storage device and
media, and CD or DVD burner for 2nd bay. In the end,
we have 12 categories with a total of 43 options. The cat-
egories (the number of options in a category) are, pro-
cessor (2), memory (4), hard drive (3), floppy (2), CD or
DVD (5), keyboard (3), mouse (4), monitor (9), speaker (5),
modem (2), network interface (2), and wireless (2).

Because we do not have the real-world demand infor-
mation, the demand types are created as follows. We first
assume that there exists a demand type that chooses all the
baseline options. We then assume that for every category,
there exists a demand type that chooses an option other than
the baseline only in that category; We finally assume that
for every two categories, there exists a demand that chooses
options other than the baselines only in those two cate-
gories. Thus, the total number of demand types (products,
equivalently) is 449. These demand types are created based
on the assumption that the Dimension 2400 Pentium model
is targeted at the low-end market, in which it is unlikely
for a customer to choose options other than the baselines
in all categories. Indeed, we can create more demand types
by assuming that for every three categories, there exist
demand-choosing options other than the baselines only in
those three categories. However, it increases the number of
the demand types to 3,684. As a result, the BOM matrix
becomes so big that it exceeds the memory limit of our
laptop computer. Lastly, we assume that the demands fol-
low independent Poisson processes and the demand arrival
rates are randomly generated (∼Uniform�2�12�). Because
we also lack real-world supply information, we created
test examples by randomly generating the base-stock levels
(∼Uniform�0�50�) and the parameters of the Erlang dis-
tributions for the random lead times. For the option of not
choosing any component in a category, we replaced it with
an artificial component with zero base-stock level and zero
lead time.
Because the base-stock levels can be as high as 50, the

problem size is too large for the method based on Clark’s
approximation. Given a sample size of 104, our numer-
ical experiments show that the method based on Monte
Carlo simulation takes less than five minutes on a Pen-
tium 1.67 GHZ laptop to evaluate one randomly generated
example.

5. Multiple-Product Batch-Ordering
Systems

In this section, we consider the multiproduct ATO sys-
tems with the batch-ordering policies and demand follow-
ing independent Poisson processes. We first provide the
analysis in §5.1, and then present the numerical methods
in §5.2.

5.1. Performance Analysis

The analysis of batch-ordering ATO systems is based on
the backward method (see §3.1) as well as on Song (2000).
In particular, Song (2000) considers batch-ordering ATO
systems with constant (not necessarily identical) replenish-
ment lead times and demands following a multivariate com-
pound Poisson process. It is shown that under Assump-
tion 1 of Song (2000) (see below) that the inventory posi-
tion vector of the components is uniformly distributed
in the vector space � = ⊗

j∈� �j , where �j = �rj +1�
rj +2� � � � � rj +Qj�.
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Assumption 5.1 (Assumption 1 of Song 2000). The
Markov chain of the inventory position vector of the com-
ponents is irreducible and aperiodic.

We refer the reader to Song (2000) for the sufficient
conditions under which Assumption 5.1 holds.
To understand the impact of Assumption 5.1, we again

consider the Dell example of §4.2. An important feature of
this example is that a customized order must require at least
one type of component from each of the basic categories,
e.g., memory, hard drive, and storage drive, etc. Indeed, this
example is representative of many real-world ATO systems,
in which the components can be classified into different
categories, and each customized order specifies at least one
component from each category; see Song and Zipkin (2003)
for other examples.
In the Dell example, for any component in a given cat-

egory, it is possible that customer demand requires only
one unit of this component together with components from
other categories. By Condition (a) of Song (2000), Assump-
tion 5.1 holds for the inventory position vector of the com-
ponents in each category. However, Assumption 5.1 may
not hold for the inventory position vector of the compo-
nents across all categories. To see this, we consider a simple
case in which each category has only one type of compo-
nent. If, further, each order requires exactly one unit from
each category, the model is the single-product assembly
system. As Song (2000) points out, the inventory position
vector of the components in a single-product assembly sys-
tem depends on the initial state, and in general does not
satisfy Assumption 5.1. Fortunately, these systems can still
be analyzed by randomizing the initial state (Song 2000).
The following proposition is based on Theorem 1 of

Song (2000).

Proposition 5.2. Under Assumption 5.1, suppose that a
demand for a product i ∈ � arrives at time t; then, the
corresponding order of a component j , j ∈ � i� that satis-
fies this demand is placed at time t − T i

j �Sj�, where T
i
j �·�

is defined in §4.1, and the random vector �Sj� j ∈ � i� is
uniformly distributed in � i =⊗

j∈� i �j .

Proof. See Appendix 3 for the details. �

For simplicity, we denote the random vector �Sj� j ∈ � i�

in Proposition 5.2 by �Si, and let s̄i = �sj � j ∈ � i� be a real-
ization of �Si. Proposition 5.2 implies that for each product
i ∈� and each s̄i ∈� i, we can apply Equations (14)–(15)
to determine the delivery lead time, denoted by Xi�s̄i�, and
the component waiting times, denoted by Wi

j �s̄
i�, j ∈ � i, as

follows:

Xi�s̄i�=max
j∈� i

��Lj − T i
j �sj��

+�� (25)

Wi
j �s̄

i�=Xi�s̄i�−Lj + T i
j �sj�� (26)

Hence, for product i ∈ � , the batch-ordering ATO system
can be reduced to multiple single-product subsystems, each

with the product i, component set � i, and a base-stock level
vector �Si uniformly distributed in � i. As in §4.1, we can
simplify the notation of T i

j �sj� by Tj�sj� for all j ∈ � i and
i ∈ � . As we point out in §4.1, these single-product sub-
systems are not identical to the single-product assembly
systems of §3 because Tj�sj�, j ∈ � i, is associated with the
superposition of the demand processes of all products that
require component j .
The expected delivery lead time, E�Xi�, i ∈ � , in a

batch-ordering system can be characterized by

E�Xi�= 1∏
j∈� i Qj

∑
s̄i∈� i

E�Xi�s̄i��� (27)

the fill rate for a target service time � � 0 is given by

P�Xi
� ��= 1∏

j∈� i Qj

∑
s̄i∈� i

P �Xi�s̄i�� ��

= 1∏
j∈� i Qj

∑
s̄i∈� i

P �Lj−Tj�sj���� ∀ j ∈� i�� (28)

and the expected inventory holding time for a component
j ∈ � , if it satisfies a demand of product i ∈ �j , follows
from Equations (26) and (27),

E�W i
j �=

1∏
j∈� i Qj

∑
s̄i∈� i

E�W i
j �s̄

i��

=E�Xi�−E�Lj�+
1
Qj

∑
sj∈�j

E�Tj�sj��� (29)

Note that Equations (27) and (28) are consistent with
Song (2000). Finally, the cost function of the multiproduct
batch-ordering ATO systems follows from Equations (24)
and (29),∑
i∈�

iE�Xi�+ ∑
j∈� � i∈�

P i
j hjE�W

i
j �

=∑
i∈�

(
i +∑

j∈�
P i
j hj

)
E�Xi�−∑

j∈�
hjE�Lj�

+∑
j

hj

Qj

∑
sj∈�j

E�Tj�sj��� (30)

Clearly, Proposition 4.3 and statements (2) and (3) of
Proposition 3.2 hold for all products in batch-ordering ATO
systems.

5.2. Performance Evaluation

In this section, we develop efficient numerical methods
based on Monte Carlo simulation to estimate the key per-
formance measures of the batch-ordering ATO systems.
Unfortunately, it is not clear how to apply the method based
on the two-moment approximation to these systems.
Observe that the average waiting times, E�W i

j �, are sim-
ple functions of the average delivery lead times E�Xi�,
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i ∈� (Equation (29)). Therefore, we focus on the average
delivery lead time (Equation (27)) and the order-based fill-
rates (Equation (28)) in the rest of this section.
The performance evaluation of a batch-ordering ATO

system poses a substantial challenge because the num-
ber of the single-product subsystems associated with each
product i ∈ � is exponential in the number of the com-
ponents j ∈ � i (Proposition 5.2). To demonstrate the chal-
lenge, consider E�Xi� and P�Xi � �� for product i ∈� . By
Equations (27)–(28), the standard methods based on Monte
Carlo simulation (Law and Kelton 1991, §1.8.3) require
multiple samples of Xi�s̄i� for each s̄i ∈� i. Evidently, there
are

∏
j∈� i Qj different single-product subsystems (each cor-

responds to a s̄i) to sample. For instance, if Qj = 2 ∀ j ∈ � i,
then the number of the single-product subsystems is 2�� i �,
where �� i� is the cardinality of � i. Hence, the standard
Monte Carlo simulation methods, which need to sample
each single-product subsystem multiple times, are ineffi-
cient for large-scale batch-ordering ATO systems.
To design methods that do not require computing times

exponential in �� i�, we first rewrite Equations (27) and (28)
as follows:

E�Xi�=E

(
1∏

j∈� i Qj

∑
s̄i∈� i

Xi�s̄i�

)
=E� �Xi�� (31)

P�Xi
���=E

(
1∏

j∈� i Qj

∑
s̄i∈� i

1�Xi�s̄i����

)
=E�7i����� (32)

where

�Xi = 1∏
j∈� i Qj

∑
s̄i∈� i

Xi�s̄i�� (33)

7i���= 1∏
j∈� i Qj

∑
s̄i∈� i

1�Xi�s̄i����� (34)

and 1�Xi�s̄i���� is the indicator function of the event
�Xi�s̄i�� ��. By Equation (25),

7i���= 1∏
j∈� i Qj

∑
s̄i∈� i

1�Lj−Tj �sj ���� ∀ j∈� i�� (35)

Let lj , tj �sj�, x
i, xi�s̄i�, x̃i, and 8i��� be a sample (real-

ization) of the random variables, Lj , Tj�sj�, X
i, Xi�s̄i�,

�Xi, and 7i���, respectively. To obtain a sample of �Xi and
7i��� for product i ∈ � , a straightforward method based
on Monte Carlo simulation works as follows:
1. Generate the samples lj and tj �sj�, j ∈ � i, for each

single-product subsystem s̄i ∈� i independently.
2. Calculate xi�s̄i� (according to Equation (25)) and

1�xi�s̄i���� for each s̄
i.

3. Compute the samples x̃i and 8i��� by Equations (33)
and (34).
Clearly, each of these three steps requires a computing

time proportional to
∏

j∈� i Qj .
In view of Equations (31)–(32), we can generate a com-

mon sample of Lj and Tj�sj� for all single-product subsys-
tems by the following method.

Method of Common Sample

Step 1. We first generate a sample for each Lj , j ∈ � ,
independently.
Step 2. For each product i ∈� , we sample maxj∈� i �rj +

Qj� many interarrival times independently.
Step 3. For each component j ∈ � , we superimpose the

demand arrival processes of products i ∈�j .
Step 4. Finally, we determine the time, tj �sj�, at which

the sj th demand arrives for each sj ∈�j and each j ∈ � .

The common samples lj and tj �sj� can substantially
reduce the computational complexities in Step 1 of the
straightforward method (a complexity analysis is provided
later). To reduce the computational complexities in Steps 2
and 3 of the method, we make the following observation:
Given a product i ∈� and a common sample lj and tj �sj�
∀ sj ∈�j , and ∀ j ∈ � , different single-product subsystems
may have the same delivery lead-time realization. This is
true because xi�s̄i� is determined by the maximum of �lj −
tj �sj��

+ over j ∈ � i, and the maximum may be shared by
other single-product subsystems in a common sample.
However, this observation alone does not guarantee effi-

cient numerical methods. It is the special structure of the
problem that allows us to efficiently identify the subsets
of � i such that xi�s̄i� are identical for all s̄i in each of these
subsets. To see this, we sort �lj − tj �sj��

+ for all sj ∈ �j

and j ∈ � i into a nonincreasing sequence 9in, n= 1�2� � � � �∑
j∈� i Qj . That is, 9

i
1 = maxsj∈�j � j∈� i ��lj − tj �sj��

+� and
9i∑

j∈� i Qj
=minsj∈�j � j∈� i ��lj−tj �sj��

+�. Instead of enumerat-
ing on s̄i over � i as in Step 2 of the straightforward method,
we enumerate on 9in and identify the single-product subsys-
tems with s̄i ∈� i for which xi�s̄i�= 9in.
To highlight the idea, we consider the following simple

example with three components. We focus on product 1
and assume, without loss of generality, that � 1 includes
all three components. For a common sample of ljs and
tj �sj�s, Table 1 lists the realization, �lj − tj �sj��

+, for each
component j ∈ � 1 from sj = rj + 1 up to sj = rj +Qj .
Obviously, for each j ∈ � , �lj − tj �rj + 1��+ � �lj −

tj �rj +2��+ � · · · � �lj − tj �rj + Qj��
+. Without loss of

generality, assume that in a particular sample, 911 = �l1 −
t1�r1+1��+. Because 9in is a nonincreasing sequence, it fol-
lows from Equation (25) that for each s̄1 = �s1� s2� s3� with
s1 = r1 + 1, the corresponding subsystem has a delivery
lead-time realization x1�s̄1� = 911. Therefore, in this sam-
ple, the number of subsystems with the delivery lead-time
realization, 911, is Q2 ×Q3.

Table 1. �lj − tj �sj��
+ by components.

Component 1 Component 2 Component 3

�l1 − t1�r1 + 1��+ �l2 − t2�r2 + 1��+ �l3 − t3�r3 + 1��+

�l1 − t1�r1 + 1��+ �l2 − t2�r2 + 1��+ �l3 − t3�r3 + 1��+

�l1 − t1�r1 + 2��+ �l2 − t2�r2 + 2��+ �l3 − t3�r3 + 2��+

· · · · · · · · ·
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Now we delete 911 from the sequence (i.e., delete �l1 −
t1�r1+1��+ from Table 1) and consider 912 for the following
three possible cases:
Case 1. 912 = �l1 − t1�r1 + 2��+,
Case 2. 912 = �l2 − t2�r2 + 1��+, and
Case 3. 912 = �l3 − t3�r3 + 1��+.
In Case 1, for all s̄1 with s1 = r1 + 2, the delivery

lead times X1�s̄1� have the same realization: 912. Thus, the
number of subsystems with the delivery lead-time realiza-
tion, 912, is also Q2 ×Q3.
In Case 2, for all s̄1 with s2 = r2 + 1, the delivery lead

times X1�s̄1� have the same realization: 912. Note that we
delete �l1− t1�r1+ 1��+ from Table 1; thus, the number of
subsystems with the delivery lead-time realization, 912, is
�Q1 − 1�×Q3.
Case 3 is similar to Case 2, i.e., for all s̄1 with s3 =

r3+1, the delivery lead times X1�s̄1� have the same realiza-
tion, 912. Note that we delete �l1− t1�r1+1��+ from Table 1;
thus, the number of subsystems with the delivery lead-time
realization, 912, is �Q1 − 1�×Q2.
We continue with this procedure until either 91n = 0 or

we have deleted all �lj − tj �sj��
+ for a particular j ∈ �1

from Table 1.
Consider a batch-ordering ATO system and a product

i ∈ � . Given a common sample of lj and tj �sj� ∀ sj ∈ �j

and ∀ j ∈ � i, we can generalize the above procedure into
the following method to obtain a sample of �Xi.

Method A

Step 1. Compute �lj − tj �sj��
+ for each sj ∈ �j and

j ∈ � i.
Step 2. Sort �lj − tj �sj��

+ ∀ sj ∈ �j and ∀ j ∈ � i into
a nonincreasing sequence that is denoted by 9in, n =
1�2� � � � �

∑
j∈� i Qj . If there is a tie across different compo-

nents, order the numbers in the tie arbitrarily; if there is
a tie for the same component across different base-stock
levels, order the numbers in the tie in the nondecreasing
sequence of the corresponding base-stock levels.
Step 3. Set n= 1, x̃i = 0, and Rj =Qj ∀ j ∈ � i.
Step 4. If 9in = 0, output x̃i and stop. Otherwise, first

identify the component associated with 9in, namely, kn.
Then, add all xi�s̄i�, which equals 9in by

x̃i ← x̃i + 9in×
∏

j �=kn� j∈� i

Rj

/ ∏
j∈� i

Qj � (36)

Finally, delete 9in (i.e., the corresponding �lkn − tkn�skn��) by

Rkn
←Rkn

− 1� (37)

If Rkn
= 0, output x̃i and stop. Otherwise, n← n+ 1 and

repeat this step.
To obtain multiple samples for �Xi, one needs to indepen-

dently generate multiple common samples of ljs and tj �sj�s
and apply Method A to each one. It is easily seen that for
different common samples of lj and tj �sj�, one may have
different subsets of the single-product subsystems with the
same delivery lead-time realizations.

Proposition 5.3. For a product i ∈ � , given a common
sample lj and tj �sj� ∀ sj ∈ �j and ∀ j ∈ � i (generated by
the Method of Common Sample), let xi�s̄i� be the sample of
Xi�s̄i� for s̄i ∈� i. Method A has the following properties:
1. It always stops before the index n reaches

∑
j∈� i Qj ,

and
2. The output x̃i satisfies

x̃i = 1∏
j∈� i Qj

∑
s̄i∈� i

xi�s̄i�� (38)

Proof. See Appendix 3 for the details. �

We now analyze the computational complexity of
Method A. For a given sample size, the computing time
for sampling the lead times and the interarrival times, and
for superimposing the demand processes is at most propor-
tional to �� � + �� � ×maxj∈��rj + Qj�+ �� � ×∑

j∈� �rj +
Qj�. Computing �lj − tj �sj��

+ ∀ sj ∀ j ∈ � i and sorting
these numbers require a computing time proportional to∑

j∈� i �rj +Qj� and �
∑

j∈� i Qj� log�
∑

j∈� i Qj�, respectively;
Step 4 of Method A takes a computing time at most
proportional to

∑
j∈� Qj . Therefore, the overall comput-

ing time for generating one sample of �Xi for all i ∈ �
is at most proportional to �� � × ∑

j∈� �rj + Qj� + �� � ×
�
∑

j∈� Qj� log�
∑

j∈� Qj�.
To develop an upper bound for the variance of a random

sample of �Xi generated by Method A, we first note that
the random samples of the delivery lead times of different
single-product subsystems are strongly correlated due to the
common random sample of Lj and Tj�sj�. However, they
are not completely correlated in general due to the differ-
ent base-stock levels. Hence, it follows from Equation (33)
that the variance of a random sample of �Xi generated by
Method A is bounded from above by the maximum vari-
ance of Xi�s̄i� over s̄i ∈� i.
We next consider 7i���, i ∈ � . Given a common sam-

ple of lj and tj �sj� ∀ sj ∈ �j and ∀ j ∈ � i, we design the
following method to obtain a sample of 7i���.

Method B

Step 1. For each component j ∈ � i, count the number of
sj ∈�j such that lj − tj �sj�� � , and denote it by Q′

j ,
Step 2. Calculate 8i���=∏

j∈� i Q′
j/
∏

j∈� i Qj .
This method is based on the fact that 1�xi�s̄i���� = 1 if and

only if lj − tj �sj� � � for all j ∈ � i (by Equations (34)–
(35)). The following proposition is straightforward; thus, it
does not need a proof.

Proposition 5.4. For a product i ∈ � , given a common
sample lj and tj �sj� ∀ sj ∈ �j and ∀ j ∈ � i (generated by
the Method of Common Sample), let xi�s̄i� be the sample
of Xi�s̄i� for s̄i ∈ � i. The 8i��� generated by Method B
satisfies

8i���= 1∏
j∈� i Qj

∑
s̄i∈� i

1�xi�s̄i����� (39)
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For a given sample size, the computational complexity of
Method B for generating a sample of 7i��� for all i ∈� is
at most proportional to �� �×∑

j∈� Qj+�� �×�� �. Applying
the same logic as for Method A, it follows from Equa-
tion (34) that the variance of a random sample of 7i���
generated by Method B is bounded from above by the max-
imum variance of the indicator functions 1�Xi�s̄i���� over
s̄i ∈� i.

6. Discussion
Several assumptions of this paper can be relaxed. Given
an ATO system, we apply the backward method (§3.1) by
asking the following key question: Suppose that a demand
for a product arrives at time t; when did the system place
orders for the corresponding components used to satisfy
this demand? Sections 3, 4, and 5 provide answers to this
question under the assumptions of Poisson demand pro-
cesses, the FCFS allocation rule, stochastic sequential lead
times, and BOM matrices with zero or one element. Below,
we relax some of these assumptions and identify the limit
of our approach. Our focus is on the base-stock systems
unless otherwise mentioned.

Non-Poisson Demand Processes. The backward meth-
od can be applied to a base-stock ATO system facing
any point unit demand process with either time-varying or
temporally correlated arrivals. This is true because answer-
ing the key question specified above for each compo-
nent requires counting backward from time t all demand
arrivals of products that require the component until the
total number of arrivals reaches the base-stock level of that
component.
However, if demand follows arbitrary point processes,

the analysis of the base-stock systems becomes more dif-
ficult because the backward counting process may depend
on the demand arrival. Furthermore, the inventory position
vector of the batch-ordering ATO systems may not be uni-
formly distributed in � , and demand arrivals may not see
the system state in time averages.

BOM Matrix with Nonnegative Integer Elements.
A similar analysis can be applied to the base-stock ATO
systems in which the elements of the BOM matrix, aij , can
choose any nonnegative integers. Consider a product i ∈�
and its component set � i, where aij � 1 for j ∈ � i. Suppose
that a demand of product i arrives at time t; we apply the
backward method to identify the time at which the corre-
sponding order of a component j is placed that completely
satisfies this demand. Let Vk, k = 1�2� � � � � be the inter-
arrival times of demands faced by the component j if we
count backward starting at time t, e.g., V1 is the most recent
interarrival time prior to t, and so on. Denote Tj�k�= V1+
V2 + · · · + Vk, and define Dk to be the demand realized
for the component j at time t − Tj�k�. Clearly, Dk, k =
1�2� � � � � is a sequence of i.i.d. random variables with prob-
ability density function P�Dk = alj�= 
l/

∑
m∈�j


m for all

l ∈�j (due to the independent Poisson demand processes).
It is easily seen that:
• If aij > sj , the corresponding order is placed at time t.• If aij � sj , but a

i
j +D1 > sj , the corresponding order is

placed at time t− Tj�1�.• In general, if aij + D1 + · · · + Dk−1 � sj , but a
i
j +

D1+· · ·+Dk > sj , the corresponding order is placed at time
t − Tj�k�, where k = 1�2� � � � � sj . In other words, Tj�k� is
determined by starting at time t, and counting backward the
demand arrivals of all products that require component j
until the accumulated demand exceeds sj − aij .
Define �N �n�� n � 0� to be a renewal process gener-

ated by �Dk� k > 0�. Then, if aij � sj , the corresponding
order is placed at time t−Tj�k� with probability P�N�sj −
aij� = k − 1�. Clearly, both the time process, Tj�k�, and
the volume process, N�n�, are dependent across compo-
nents j ∈ � i. Although the dependence structure is much
more difficult to characterize than that of §4, the numerical
method based on Monte Carlo simulation can be extended
to handle this case.

Capacitated Component Production. An ATO sys-
tem with capacitated component production is different
from the analogous ATO system with stochastic sequen-
tial lead times because the component delays are dependent
in different ways. To highlight the differences and develop
insights into their impact, let us reconsider the two compo-
nents one product example in §3, and assume that the com-
ponent production processes are capacitated and sequential
(as in Song et al. 1999). Without loss of generality, let sk �
sj . Suppose that a demand arrives at time t; then, the cor-
responding orders of the components j and k that meet this
demand are placed at time t−T �sj� and t−T �sk�, respec-
tively. By Equation (3), the delivery lead time satisfies

X =max��Lj − T �sj��
+� �Lk − T �sk��

+�

=max��Lj − T �sj��
+� �Lk − T �sk − sj�− T �sj��

+��

where Lj (Lk) depends on the demand arrivals prior to t−
T �sj� (t− T �sk�, respectively). See Figure 1.
The dependence structure of an ATO system with capac-

itated component production differs from that of the anal-
ogous system with stochastic sequential lead times in two
ways: First, although Lj (or Lk) is independent of T �sj�
(or T �sk�, respectively), the lead times Lj and Lk become
positively correlated due to the common demand process.
Second, if sk �= sj , then Lj becomes negatively correlated
with T �sk�. This is true because Lj is negatively correlated
with T �sk− sj�, which is part of T �sk�. We refer the reader
to Figure 1 for a visual aid.
The positive dependence among the lead times has an

impact on the delivery lead times.

Proposition 6.1. Consider an ATO system. If �Lj� j ∈ ��
is associated, and if �Lj� j ∈ �� is independent of {T i

j �sj�,
j ∈ � i} for all i ∈� , then

P�Lj − T i
j �sj�� �j� j ∈ � i�� P�L′

j − T i
j �sj�� �j� j ∈ � i�

for all ��j� j ∈ � i� and i ∈�� (40)
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where L′
j has the same marginal distribution as Lj for each

j ∈ � , and �L′
j � j ∈ �� is a set of independent random

variables.
In other words, given that the component lead times are

sequential and independent of �T i
j �sj�� j ∈ � i� for all i ∈� ,

the delivery lead time of each product in an ATO system
with associate lead times (across components) is stochasti-
cally smaller than the delivery lead time of the same prod-
uct in an analogous system with independent lead times
(across components).

Proof. See Appendix 4 for the details. �

To give an example of the associated random lead times,
let us consider a queueing system with multiple parallel
servers facing a common demand stream. Each server cor-
responds to a capacitated component supplier in the ATO
systems, and the waiting times at these servers correspond
to the component lead times. The waiting times at differ-
ent servers are associated if the service times of different
servers are associated and the demand interarrival times
are independent. This is true because the waiting times are
nondecreasing functions of the service times and nonin-
creasing functions of the interarrival times; see the Lindley
equation of a single-server queue (Equations (8.4)–(8.8) in
Kleinrock 1975). If the service times are independent of
the demand interarrival times, then Theorem 5.2.3 of Tong
(1980) immediately implies the association of these random
variables. We refer to Xu (1999) for a discussion of the
dependence among the waiting times in a multiple-server
queueing system where the servers face partially common
demand streams. A different example is a single-server
queue with associated service times. The waiting times of
consecutive items at this server are associated if the demand
interarrival times are independent, again because the wait-
ing times are nondecreasing functions of the service times
and nonincreasing functions of the interarrival times.
The proposition has an important implication in practice.

As one of the referees pointed out, in this age of secu-
rity concerns, concentration of component production in
low-wage regions, and partnership with third-party logistics
providers, the production cycle times as well as transporta-
tion lead times of various components may be subject to
the impact of the same random events, and therefore may
be highly positively dependent (e.g., associated). Proposi-
tion 6.1 shows that ignoring these dependences may result
in overestimating (stochastically) the delivery lead times to
end customers.
The cross dependence between the lead times and T �sj�

also has an impact on the delivery lead times to the end
customers.

Proposition 6.2. Consider a single-product assembly sys-
tem with capacitated component production. Suppose that a
demand arrives at time t; let �V = �V1� V2� � � �� be the vector
of the interarrival times that we index backward starting
at t. Replace Lj by Lj��V � and T �sj� by T �sj� �V � to show

their dependence on �V . Then, the probability distribution
of the delivery lead time of this demand satisfies

P�Lj��V �− T �sj� �V �� �j� j ∈ ��

� P�Lj��V ′�− T �sj� �V �� �j� j ∈ ��

for all �j� j ∈ � � (41)

where �V ′ is an independent copy of �V .
Proof. See Appendix 4 for the details. �

Proposition 6.2 implies that in addition to the positively
dependent lead times, the cross dependence between the
lead times and the T �sj�s could further reduce the delivery
lead time. We conjecture that Proposition 6.2 holds true for
more general multiproduct ATO systems. However, due to
the complexity of the demand processes, this remains an
open problem.
The dependences among the lead times can be incorpo-

rated into our analysis without much difficulty (see §3).
However, the cross dependence between Lj and T �sk� sig-
nificantly complicates the analysis. We refer the reader
to Song et al. (1999) for an exact method for small-size
capacitated ATO systems, and Dayanik et al. (2003) for
approximations and bounds for large-scale capacitated ATO
systems.

I.i.d. Lead Times. It is also interesting to compare
an ATO system with stochastic sequential lead times to
an ATO system with i.i.d. lead times. For simplicity, let
us consider the single-product assembly systems. Given a
component j ∈ � and assuming that a demand arrives at
time t, we know from §3 that in the system with stochas-
tic sequential lead times, the corresponding order for this
demand is placed at time t−T �sj�. Now, in the system with
i.i.d. lead times, the corresponding order for this demand is
still placed at one of the demand arrival times, t− T �Kj�.
However, Kj is an integer-valued random variable which
can be either positive, zero, or negative. To see this, let us
further assume that at time t, the system has zero on-hand
inventory for component j . Then, the corresponding order
that satisfies this demand can be placed at any demand
arrival before, on, or after time t. In addition, the distri-
bution of Kj depends on sj , as well as all previous and
future demand arrivals if we assume that the replenishment
lead times have unbounded domains. It is not clear how to
evaluate the performances of ATO systems with i.i.d. lead
times using our approach. Indeed, the approaches based on
the outstanding orders, e.g., Song and Yao (2002) and Lu
et al. (2003), may be more effective.

Priority Rules. Because different products may have
different backorder penalty costs, it is desirable to allo-
cate inventory to products according to some priority rules
other than the FCFS rule. For periodic review ATO sys-
tems, we refer the reader to Zhang (1997) for the study
of the fixed priority rule, Agrawal and Cohen (2001) for
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the fair share rule, and Akcay and Xu (2004) for the
OBCA rule. While the aforementioned papers assume dif-
ferent allocation rules for demand realized in the same time
period, they all assume the FCFS rule to process demand
realized at different time periods. Exceptions to the FCFS
rule are Plambeck and Ward (2003) and Plambeck (2005),
which study the dynamic order-sequencing problem in ATO
systems with capacitated component production. Plambeck
and Ward (2003) proves that if orders can be expedited
instantaneously at higher costs, then the control problem
of a multicomponent ATO system separates into an inde-
pendent control problem of each component. Plambeck
(2005) further shows that a simple policy with independent
control of each component is asymptotically optimal in a
high-volume ATO system with fixed transportation cost and
nonzero transportation lead times.
To see if the approach proposed in this paper can be

extended to handle the priority rules, let us consider a sim-
ple single-item inventory system with two-customer classes
where the inventory is reviewed continuously in time and
is controlled by a �Q� r�K� rationing policy. We assume
that demands follow Poisson processes. A �Q� r�K� policy
works as follows: When the inventory position (on-hand
plus on-order minus backorders) drops to r , then order
Q units. Demand from both classes is filled on an FCFS
basis, as long as the on-hand inventory level is greater
than or equal to K. Once the on-hand inventory level falls
below K, class 2 (with lower penalty cost) demand is back-
ordered while class 1 (with higher penalty cost) demand
continues to be filled as long as inventory is available. We
refer the reader to Deshpande et al. (2003) for a recent
review. For simplicity, let Q = 1, which corresponds to
a base-stock rationing policy. Supposing that a class 1
demand arrives at time t, we count backward starting at t
and define T 1�r + 1� to be the sum of r + 1 interarrival
times of the demand process of class 1, and T 1⊕2�r + 1�
to be the sum of r + 1 interarrival times of the superim-
posed demand process of both class 1 and class 2. Clearly,
the corresponding order that satisfies this class 1 demand
is placed at one of the demand arrival times, T ′, where
t− T 1�r + 1�� T ′ � t− T 1⊕2�r + 1�. Furthermore, T ′ is a
random variable whose distribution depends on the arrivals
and replenishment processes of all demand realized before
time t. Similar logic can be applied to class 2 demand, i.e.,
suppose that a class 2 demand arrives at time t; then the
corresponding order for this demand is placed at time T ′′

with T ′′ � t − T 1⊕2�r + 1�. However, it is not yet known
how to characterize the distribution of T ′ and T ′′ exactly
using the approach developed in this paper.

Implication for Optimization. Lu and Song (2005)
develop an efficient algorithm based on the submodu-
larity property of the objective function to optimize the
base-stock levels. Our numerical methods can serve as
performance evaluation subroutines for the optimization
algorithm. For problems with relatively small size, e.g.,

�� �� 20, the method based on Clark’s approximation pro-
vides reasonably accurate expected delivery lead times,
and thus the expected backorders. For large-size problems,
the simulation-based method is more appropriate. However,
more research needs to be conducted to handle the random
errors generated by the simulation-based method.

Appendices 1 and 2
Appendices 1 and 2 can be found at the INFORMS home
page in the Operations Research online collection at http://
or.pubs.informs.org/Pages/collect.html.

Appendix 3
Proof of Proposition 5.2. Our starting point is Theo-
rem 1 of Song (2000), which states that the inventory posi-
tion vector of the components has a uniform equilibrium
distribution in � . The theorem holds for ATO systems with
stochastic sequential lead times provided that Assumption 1
of Song (2000) is satisfied. This is true because the inven-
tory position is a function of only the demand process and
the inventory control policy, but not the lead time.
Because we assume that demand follows independent

Poisson processes, any demand arrival sees the inven-
tory position vector in the uniform equilibrium distribution
(PASTA, see, e.g., Heyman and Sobel 1982). Thus, at the
time of a demand arrival for product i ∈ � , the inventory
position vector of the required components j ∈ � i is uni-
formly distributed in � i.
Let us now focus on a particular product i ∈� , and con-

sider a component j ∈ � i. Suppose that an order of size
Qj is triggered by a demand at time t0; we make the fol-
lowing two observations: (1) This order will be used to
satisfy the rj + 1st, rj + 2nd, up to rj +Qj th demand that
arrives after t0. Consequently, relative to the arrival time
of the rj + qj th demand, which occurs at t0 + Tj�rj + qj�
(Tj�·� is defined in §4.1), the corresponding order of the
component j is placed Tj�rj + qj� time earlier. (2) The
inventory position right before the arrival of the rj + qj th
demand (after t0) is exactly rj +Qj − ��rj +qj −1�modQj�,
which has a one-to-one relationship with rj + qj for qj ∈
�1�2� � � � �Qj�.
It follows from the first observation that if a demand

of product i arrives at time t, the corresponding order of
component j that satisfies this demand must be placed at
one of these times: t−Tj�rj+qj� where rj+qj ∈�j . By the
second observation, the uniform equilibrium distribution of
the inventory position vector of components j ∈ � i in � i

implies a uniform equilibrium distribution of the random
vector �Sj� j ∈ � i� in � i. The proof is now complete. �

Proof of Proposition 5.3. 1. The proof is by contradic-
tion. Suppose that n=∑

j∈� i Qj . Then, Rj must be zero for
all components j ∈ � i except one, because Method A sub-
tracts one of the Rj , j ∈ � i, by one in each iteration. There-
fore, Rj for some j ∈ � i must reach zero before n reaches∑

j∈� i Qj . This creates a contradiction.
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2. We only need to show that given a common sample,
lj and tj �sj� ∀ sj ∈ sj ∀ j ∈ � , Method A adds xi�s̄i� =
maxj∈� i ��lj−tj �sj��

+� exactly once for each s̄i ∈� i. Let us
first assume that 9in > 0 for all n= 1� � � � �

∑
j∈� i Qj .

For each s̄i ∈� i, we enumerate �lk− tk�sk��
+ over k ∈ � i

to identify the one, denoted by �lj − tj �sj��
+, with the

smallest index n in the sequence of 9in, and that satisfies

�lj − tj �sj��
+ =max

k∈� i
��lk − tk�sk��

+�� (42)

We denote this index by ns̄i .
First, xi�s̄i� is never added before Method A processes

9ins̄i
. This is true because ns̄i is the smallest index of �lk −

tk�sk��
+ over k ∈ � i; thus, for each n< ns̄i , the correspond-

ing single-product subsystems added must have different
base-stock level vectors than s̄i.
Second, the 9ins̄i

will be processed before Method A
stops. To see this, we note that when n = ns̄i , Rk � 1 for
all components k ∈ � i. This is true because Equation (42)
and the definition of ns̄i imply that for each component
k ∈ � i but k �= j , �Lk − Tk�sk��

+ has not yet been deleted.
When 9ins̄i

is processed by Equation (36), xi�s̄i� is added
exactly once.
Finally, xi�s̄i� is never added after Method A processes

9ins̄i
because �lj − tj �sj��

+ is deleted by Equation (37).
If 9in′ = 0 for n′ <

∑
j∈� i Qj , then 9in = 0 for all n′ � n

because the sequence of 9in is nonincreasing. Method A
stops because all the single-product subsystems with a
delivery lead time equal to 9in, n

′ � n, do not contribute
to x̃i. �

Appendix 4
Proof of Proposition 4.3. For a given product i ∈ � ,
suppose that a demand of this product arrives at time t. For
each product k, k ∈� , we count backward, starting at t, all
the previous interarrival times of demand for this product.
Define � k to be the set of the most recent max�sj � j ∈ ��
interarrival times of product k, k ∈� . We further define �
to be the union of � k for all k ∈� . Note that each � k is
a set of independent random variables and � k, k ∈� , are
mutually independent. It follows from parts (3) and (2) of
Lemma 4.2 that � is a set of associated random variables.
Clearly, T i

j �sj� for each j ∈ � i is a nondecreasing
function in each element of � . Therefore, part (4) of
Lemma 4.2 implies that �T i

j �sj�� j ∈ � i� is associated for
each i ∈ � . The desirable result now follows immediately
from part (5) of Lemma 4.2. �

Proof of Proposition 6.1. For each i ∈ � , we condition
on T i

j �sj�= tij , j ∈ � i. Because �Lj� j ∈ �� is independent
of �T i

j �sj�� j ∈ � i�, we must have

P�Lj − tij � �j� j ∈ � i��
∏
j∈� i

P �Lj � �j + tij �

= ∏
j∈� i

P �L′
j � �j + tij �

= P�L′
j − tij � �j� j ∈ � i�

∀ �tij � j ∈ � i� ∈R�� i �� (43)

where the inequality follows by the fact that �Lj� j ∈ �� are
associated, and by parts (1) and (5) of Lemma 4.2, the first
equality is due to the same marginal distribution of L′

j and
Lj , j ∈ � , and the second equality is due to the fact that L′

j ,
j ∈ � , are independent random variables. Unconditioning
on T i

j �sj�= tij yields the requisite result. �

Proof of Proposition 6.2. Note that for each j ∈ � ,
Lj��V � and −T �sj� �V � are nonincreasing functions in each
element of �V . Furthermore, T �sj� �V � only depends on
�V1� V2� � � � � Vsj �, while Lj��V � only depends on �Vsj+1�
Vsj+2� � � ��. The requisite result now follows immediately
from Theorem 4.1 of Goldstein and Rinott (2004) and its
Application 1. �
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