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Abstract

We consider a multi-product and multi-component Assemble-to-Order (ATO) system where

the external demand follows compound Poisson processes and component inventories are con-

trolled by continuous-time batch ordering policies. The replenishment lead-times of components

are stochastic, sequential and exogenous. Each element of the bill of material (BOM) matrix can

be any non-negative integer. Components are committed to demand on a first-come-first-serve

basis. We derive exact expressions for key performance metrics under either the assumption

that each demand must be satisfied in full (non-split orders), or the assumption that each unit

of demand can be satisfied separately (split orders). We also develop an efficient sampling

method to estimate these metrics, e.g., the expected delivery lead-times and the order-based fill

rates. Based on the analysis and a numerical study of an example motivated by a real-world

application, we characterize the impact of the component interaction on system performance,

demonstrate the efficiency of the numerical method and quantify the impact of order splitting.

Key words: Assemble-to-Order system, batch ordering policy, compound Poisson demand, order

splitting.
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1 Introduction

Assemble-To-Order (ATO) systems are becoming increasingly important for today’s manufacturing

firms as many companies strive to increase product variety and responsiveness to demand without

carrying the expensive finish goods inventories. A key challenge for ATO systems is the efficient

management of the component inventories, which has been the main focus of recent studies. We

refer the reader to Song and Zipkin (2003) and Xu (2001) for excellent reviews of the motivation,

examples and related literature of ATO systems.

Batch demand and batch ordering policies are common in many real world ATO systems. In

such a system, a customer may demand multiple units of a product, each of which is assembled

from multiple components with different quantities. The component inventories are replenished in

batches (e.g., truck load), to achieve economies of scale in production and transportation. While in

some cases, customers prefer to receive each unit of product as soon as it becomes available (split

orders); in others, customers prefer to receive all units simultaneously (non-split orders).

In this paper, we consider ATO systems where external demand follows independent compound

Poisson processes and the component inventories are controlled by continuous-time batch ordering

policies. Components are committed to demand on a first-come-first-serve (FCFS) basis. The

replenishment lead-times of components are stochastic, sequential and exogenous (Svoronos and

Zipkin 1991). Our objective is two-fold: (1) deriving exact expressions for the key system perfor-

mance metrics, i.e., the delivery lead-times and order-based fill rates, under either the split orders

or the non-split orders assumption; (2) developing algorithms that can evaluate these performance

metrics for ATO systems of large sizes.

Research on ATO systems with compound Poisson demand is quite extensive, see, e.g., Song

and Zipkin (2003), Xu (2001) and Hausman, Lee and Zhang (1998) for literature reviews. For

constant lead times, we refer to Song (1998, 2002) for systems with continuous-time base-stock

policies, and to Hausman, et al. (1998), Zhang (1997), Agrawal and Cohen (2001) and de Kok

(2003) for systems with periodic-review base-stock policies. For i.i.d. lead times, we refer to Lu,

Song and Yao (2003), Lu and Song (2005) and Lu (2007, 2008) for systems with continuous-time

base-stock policies. Cheng, et al. (2002) studies the performance of an Configure-to-Order (CTO)

system with stochastic sequential lead times. To link the base-stock levels of components to the

order-based fill rates, the authors assume that at most one component can be out of stock at any
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time. Zhao (2008) provides an exact analysis for supply chains where there is at most one directed

path between every two stages. External demand follows compound Poisson processes, and the

lead-times are stochastic and sequential. However, the focus of the paper is still on base-stock

policies.

Due to the analytical and numerical challenges, research on batch ordering policies for ATO

systems in particular, and for assembly systems in general, is limited. Ernst and Pyke (1992) studies

an assembly system with multiple components and one final product. The component inventories

are replenished in batches. The authors propose approximations for the expected cost functions

and develop algorithms to compute the reorder points subject to a service level constraint. Chen

(2000) studies a multi-stage assembly system with constant lead-times and one product at each

stage. Given the batch sizes at all stages, it is shown that the batch ordering policy is optimal

provided that the batch sizes satisfy certain regularity conditions. To evaluate and optimize the

performance for the assembly system, an equivalent serial supply chain is constructed based on

Rosling (1989). Plambeck (2005) considers a batch ordering ATO system with capacitated suppliers

under the expediting assumption, that is, the component orders can be expedited instantaneously

at higher costs. Further assuming high volume of demand, it is shown that the control problem

of a multi-component ATO system separates into independent control problem of each component.

Benjaafar and Elhafsi (2006) studies an ATO system with a single product but multiple demand

classes. Under Markovian assumptions on demand and supply, the paper proves structural results

for the optimal ordering and allocation policies. It further compares the performance between

the optimal policy and some simple heuristic policies. Elhafsi (2008) generalizes the results to

compound Poisson demand.

Song (2000) studies a multi-component and multi-product ATO system with constant lead-

times where demand follows a multivariate compound Poisson process and component inventories

are managed by continuous-time batch ordering policies. It is shown that under certain general

conditions, the inventory position vector of the components has a uniform equilibrium distribution.

Therefore, the key performance measures, e.g., the expected order-based backorders and fill-rate,

of a batch-ordering ATO system can be expressed as the average of the counter-parts of multiple

base-stock systems. Two challenges remain: (1) the number of base-stock systems corresponding to

a batch ordering ATO system is exponential in the number of components; (2) how to incorporate
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stochastic sequential lead times?

Zhao and Simchi-Levi (2006) addresses these challenges in an ATO system with Poisson demand

and unit BOM matrix (i.e., each element of the BOM matrix can be either zero or one). They pre-

sented an exact analysis for the ATO systems with batch ordering policy and stochastic sequential

lead times. They also developed an efficient numerical method based on Monte Carlo simulation

to evaluate system performance. Compound Poisson demand introduces additional complexities

to the exact analysis and computation because of the components’ interaction caused by common

demand size processes. In addition, the delivery lead-times and fill-rates are now demand size (or

demand unit) dependent (Zipkin 1991, Simchi-Levi and Zhao 2005); so Proposition 5.2 of Zhao

and Simchi-Levi (2006), which lays the foundation for the numerical method, does not hold for

compound Poisson demand.

This paper generalizes the existing literature to a class of ATO systems with both batch ordering

policies and compound Poisson demand. We considered the case of the non-split orders as well as

the case of split orders. Section 2 presents the model and notations. In Section 3, we characterize

key system performance metrics (e.g., delivery lead times and fill rates) as explicit functions of

lead times, demand sizes and interarrival times. For the special case of a single product and

two components, we provide an analysis for the delivery lead times that allow their probability

distributions to be determined exactly. Based on the analysis, we show that ignoring the dependence

among components results in over-estimating the delivery lead times. In Section 4, we show that

although the numerical method of Zhao and Simchi-Levi (2006) does not directly apply here, a

modification does which leads to computationally efficient algorithms for systems of large sizes.

The algorithms are essentially constrained by their requirements of memory due to the large BOM

matrix. A numerical example motivated by a real-world problem is presented in Section 5. The

numerical example also allows us to quantify the impact of order splitting. This is valuable because

as Diks, et al. (1996) points out, the impact of order-splitting has never been explicitly studied.

2 The Model

Most notations and assumptions here follow Zhao and Simchi-Levi (2006) except for those on the

demand process and the BOM matrix. For clarity, we summarize the notations and assumptions

as follows: let I be the product set and J be the component set. For any component j ∈ J , the
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continuous-time batch ordering policy has the reorder point (rj and batch size Qj). A continuous-

time batch-ordering policy works as follows: whenever the inventory position (net inventory plus

inventory on order) drops to or below a reorder point, an order of an integer number of the batch

size is placed to raise the inventory position up to the smallest integer above the reorder point.

We refer the reader to Zipkin (2000) for more discussions on this policy. We assume that the

replenishment lead time of component j ∈ J is stochastic and sequential, and denoted by Lj.

We further assume that the assembly cycle time is negligible with respect to the replenishment

lead-times.

Demand follows independent compound Poisson processes with arrival rates λi and random sizes

Di, i ∈ I, where P{Di ≥ 1} = 1. Demands are satisfied on a FCFS basis. For any demand that

cannot be satisfied immediately, we assume it is fully backlogged. Consider one unit of a demand,

if some of its required components are in stock but others are not, we put the in-stock components

aside as “committed stock” (we refer the reader to Song and Zipkin 2003 for more explanation of

this assumption).

Define A = [ai
j] to be the BOM matrix, i.e., assembling product i requires ai

j units of component

j. ai
j is a non-negative integer. For convenience, we define Ij to be the set of products that require

component j, Ij = {i ∈ I|ai
j ≥ 1}; and J i to be the set of components required by product i,

J i = {j ∈ J |ai
j ≥ 1}. We finally define vector X = {X i, i ∈ I} to be the delivery lead-times of the

products.

For the ease of exposition, we define the following notations. Let Sj = {rj+1, rj+2, . . . , rj+Qj},
Si =

⊗
j∈J i Sj and S =

⊗
j∈J Sj. In a similar vein, let Qj = {1, 2, . . . , Qj}, Qi =

⊗
j∈J i Qj and

Q =
⊗

j∈J Qj .

3 Performance Analysis

For constant lead times and compound Poisson demand, Song (2000) shows that the inventory

position vector of all the components are uniformly distributed in S under the assumption that

the Markov chain of the inventory position vector of the components is aperiodic and irreducible.

We refer to Song (2000) for sufficient conditions under which this assumption holds. Even if the

assumption does not hold for some ATO systems, e.g., single-product assembly systems, we can

still study these systems by assuming randomized initial inventory positions (Song 2000), which
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leads to uniformly distributed inventory position vector in S.

All these results hold for stochastic sequential lead times and compound Poisson demand con-

sidered in this paper. This is true because the inventory position vector does not depend on the

replenishment process (e.g., the lead times) but only depends on demand processes and the ordering

policy (which remain unchanged from this paper to Song (2000)).

We first study the systems under the assumption of non-split orders. Consider a component

j ∈ J . First note that the demand process faced by component j is the superposition of the

demand processes of all products i ∈ Ij. Therefore, it is a compound Poisson process with size Dj

such that P{Dj = Diai
j} =

λi∑
l∈Ij

λl
. It is convenient to assign a priority list to different units of

each demand so that inventories will be committed to these demand units according to this list.

Clearly, under the non-split orders assumption, a demand is not satisfied until the last unit of this

demand is satisfied.

Consider a product i ∈ I and one of its component j ∈ J i. We ask the following key question

(Zhao and Simchi-Levi 2006): suppose a demand of size y′ for product i arrives at time t, when

is the corresponding order of the component j placed that completely satisfies this demand (i.e.,

satisfy the last unit of y′ai
j)? Clearly, y′ ≥ 1 as P{Di ≥ 1} = 1 for all i ∈ I. For simplicity, we

denote y = y′ai
j.

To answer this question, we note that because the demand process faced by component j is

compound Poisson, the demand process counting backward starting from the arrival time of any

demand is a compound Poisson process and is independent of the starting time. Hence, we suppress

the product index i in the following analysis unless otherwise mentioned. We define the following

notations. For the component j, we count backwards starting at t and let Dj,k, k = 1, 2, . . . be the

size of the kth most recent demand arrival prior to t. Note that Dj,k, k = 1, 2, . . . can represent

demands for different products that require component j. Let IPj,k be the inventory position right

after the arrival of the kth most recent demand and the corresponding ordering decision. Finally,

let Vj,k be the kth most recent interarrival time, k = 1, 2, . . ., e.g., Vj,1 is the time between the most

recent demand arrival prior to t and t. For simplicity, we index the kth most recent demand arrival

prior to t by the kth demand arrival.

It is more convenient to consider the complement of IPj,k, IP c
j,k, where IP c

j,k = rj +Qj − IPj,k.
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By the continuous-time batch ordering policy, we must have,

IP c
j,k = [IP c

j,k+1 + Dj,k] mod Qj. (1)

Here, x mod y is the remainder on dividing x by y.

Lemma 3.1 IP c
j,k+1 is uniquely determined by IP c

j,k and Dj,k, where k = 1, 2, . . .,

Proof. Given 0 ≤ IP c
j,k < Qj and Dj,k ≥ 1, Eq. (1) implies that for some m = 0, 1, . . ., the

following equations hold,

IP c
j,k+1 = IP c

j,k − Dj,k + mQj and IPj,k = IPj,k+1 − Dj,k + mQj. (2)

Note that 0 ≤ IP c
j,k+1 < Qj , then m must satisfy,

0 ≤ IP c
j,k − Dj,k + mQj < Qj.

Clearly, there must exist a unique m ≥ 0 so that the above inequalities are satisfied. The proof is

now completed.

Due to the batch ordering policies, the corresponding order of the component j that satisfies

the last unit (i.e., the yth unit) of the demand realized at t, must be placed at one of the demand

arrival times either at or prior to t. Let IPj,1 = rj + qj where qj ∈ Qj . We define Kj(rj + qj, y)

to be the index of the demand arrival at which the corresponding order is placed, where Kj(rj +

qj , y) = 0 indicates that the corresponding order is placed at time t. To characterize the probability

distribution of Kj(rj + qj , y), we make the following observation.

Observation 3.2 For k = 1, 2, . . ., if IPj,k ≥ ∑k−1
l=1 Dj,l + y, then the corresponding order must

be placed either at or prior to the kth demand arrival, that is, Kj(rj + qj , y) ≥ k; otherwise, the
corresponding order must be placed after the kth demand arrival, that is Kj(rj + qj , y) < k.

This observation follows immediately from the assumption of the FCFS rule and the non-

crossing property of the stochastic sequential lead-times. Indeed, this observation holds for any

inventory policy that places orders only upon demand arrivals as long as the FCFS rule and non-

crossing property hold. Based on this observation, we design the following procedure to identify

Kj(rj + qj , y) by looking backward from time t and checking on the inventory positions IPj,k for

k = 1, 2, . . ..
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1. Right before t, let the inventory position IPj,1 = rj + qj . If IPj,1 < y, then it follows from

Observation 3.2 that Kj(rj + qj , y) < 1. Since Kj(rj + qj, y) ≥ 0, then Kj(rj + qj , y) = 0.

Stop. Otherwise, if IPj,1 ≥ y, then Kj(rj + qj , y) ≥ 1. Calculate IPj,2 by IPj,1 and Dj,1 and

continue.

2. If IPj,2 < Dj,1 + y, then Kj(rj + qj , y) < 2 (Observation 3.2). It follows from the fact of

Kj(rj + qj, y) ≥ 1 that Kj(rj + qj , y) = 1. Stop. Otherwise, if IPj,2 ≥ Dj,1 + y, then

Kj(rj + qj , y) ≥ 2. Calculate IPj,3 by IPj,2 and Dj,2 and continue.

3. In general, given that IPj,k ≥ ∑k−1
l=1 Dj,l +y for a k ≤ rj +Qj , if IPj,k+1 <

∑k
l=1 Dj,l +y, then

Kj(rj + qj, y) = k. Otherwise, if IPj,k+1 ≥ ∑k
l=1 Dj,l + y, then Kj(rj + qj, y) ≥ k. Calculate

IPj,k+1 by IPj,k and Dj,k and continue.

Remarks:

• In each step of k > 1, IPj,k can be uniquely determined by IPj,k−1 and Dj,k−1. This is

true because the complement of IPj,k, IP c
j,k, is uniquely determined by IP c

j,k−1 and Dj,k−1

(Lemma 3.1).

• Kj(rj + qj , y) ≤ rj + Qj, due to Observation 3.2 and the fact that P{Di ≥ 1} = 1, ∀i ∈ I.

• At step k, if IPj,k ≥ ∑k−1
l=1 Dj,l +y and IPj,k+1 <

∑k
l=1 Dj,l +y, then an order must be placed

right after the kth demand arrival. This is true because the above two inequalities imply that

IPj,k > IPj,k+1 − Dj,k, and therefore by Eq. (2), IPj,k = IPj,k+1 − Dj,k + mQj for some

m > 0.

• For a k, if IPj,k ≥ ∑k−1
l=1 Dj,l + y, then IPj,k−1 ≥ ∑k−2

l=1 Dj,l + y must hold either in case

of IPj,k − Dj,k−1 = IPj,k−1 or in case of IPj,k − Dj,k−1 < IPj,k−1. Furthermore, if IPj,k <∑k−1
l=1 Dj,l+y, then IPj,k+1 <

∑k
l=1 Dj,l+y must hold either in case of IPj,k+1−Dj,k = IPj,k or

in case of IPj,k+1−Dj,k < IPj,k. Therefore, there exists a unique k such that Kj(rj+qj,y) = k.

The following Proposition summarizes the above results.

Proposition 3.3 Under the assumption of non-split orders, consider a demand of size y arrives at
time t and sees the inventory position of component j ∈ J at IPj,1 = rj+qj . Then the corresponding
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order of this component that satisfies the last unit of y is placed at time t−Tj(Kj(rj +qj , y)), where

Tj(Kj(rj + qj , y)) =
∑Kj(rj+qj ,y)

k=1 Vj,k, and Kj(rj + qj , y) ≤ rj + Qj is uniquely determined by,

Kj(rj + qj, y) =

{
0 if rj + qj < y

k if IPj,k ≥ ∑k−1
l=1 Dj,l + y and IPj,k+1 <

∑k
l=1 Dj,l + y.

(3)

Due to the replenishment lead-time, the corresponding order of component j is replenished at t −
Tj(Kj(rj + qj , y)) + Lj, and the delay of this component is [Lj − Tj(Kj(rj + qj , y))]+.

Clearly, Kj(rj + qj, y) is statistically different for different y or rj + qj.

In the special case of unit demand, i.e., Poisson demand processes, the joint distribution

P{Kj(rj + qj, 1) = kj, Kj̃(rj̃ + qj̃, 1) = kj̃} = 1
Qj

1
Qj̃

(see Zhao and Simchi-Levi 2006). But for

compound Poisson demand, the joint distribution is much more complex. To see this, let’s consider

a component j ∈ J and a product i ∈ Ij. We first derive the marginal probability distribution for

Kj(IPj,1, D
iai

j). We need the following Lemma.

Lemma 3.4 In steady state, IPj,k is independent of the demand sizes Dj,l for l > k.

Proof. We consider P{Dj,k+1 = y1, . . . , Dj,k+l = yl, IPj,k = rj +qj} in steady state, where qj ∈ Qj.

Because IPj,k+l+1 is uniquely determined by Dj,k+1, . . . , Dj,k+l and IPj,k (Lemma 3.1), we can

define IPj,k+l+1 = φ(Dj,k+1, . . . , Dj,k+l, IPj,k). Then we must have

P{Dj,k+1 = y1, . . . , Dj,k+l = yl, IPj,k = rj + qj}
= P{Dj,k+1 = y1, . . . , Dj,k+l = yl, IPj,k+l+1 = φ(y1, . . . , yl, rj + qj)}
= P{Dj,k+1 = y1, . . . , Dj,k+l = yl}P{IPj,k+l+1 = φ(y1, . . . , yl, rj + qj)}
=

1
Qj

P{Dj,k+1 = y1, . . . , Dj,k+l = yl}
= P{Dj,k+1 = y1, . . . , Dj,k+l = yl}P{IPj,k = rj + qj}.

The last two equalities are due to the steady state assumption. The proof is now completed.

For the ease of exposition, we denote Ki
j = Kj(IPj,1, D

iai
j) and Dj,0 = Diai

j. Note that in

steady-state, IPj,1 is uniformly distributed in Sj and is independent of the demand sizes Dj,k, k ≥ 0

(Lemma 3.4). By Proposition 3.3, we condition on IPj,1 = rj + qj and arrive at,

P{Ki
j = 0} =

1
Qj

Qj∑
qj=1

P{Dj,0 > rj + qj} =
1

Qj

Qj∑
qj=1

P{Diai
j > rj + qj}. (4)
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For 0 < k ≤ rj + Qj, conditioning on IPj,k+1 = rj + qj and Dj,k = z yields,

P{Ki
j = k} =

1
Qj

Qj∑
qj=1

∞∑
z=1

P{Dj,k = z}P{rj + qj − z <
k−1∑
l=0

Dj,l ≤ IPj,k}, (5)

where IPj,k = rj +Qj − IP c
j,k and IP c

j,k = [Qj − qj + z] mod Qj. If z ≤ qj −1, then P{rj + qj − z <∑k−1
l=0 Dj,l ≤ IPj,k} = 0 since IPj,k = rj + qj − z. In addition, if we define z = mQj + d where

d = qj , qj + 1, . . . , Qj + qj − 1, then IPj,k varies from rj + Qj, rj + Qj − 1 to rj + 1 as d varies from

qj , qj + 1 to Qj + qj − 1. Combining these facts with Eq. (5) yields,

P{Ki
j = k} =

1
Qj

Qj∑
qj=1

∞∑
m=0

Qj+qj−1∑
d=qj

P{Dj,k = mQj + d}

×P{rj + qj − mQj − d <
∑k−1

l=0 Dj,l ≤ rj + Qj + qj − d}.
(6)

To characterize the joint distribution, we note that for the demand of product i that arrives at

time t, Ki
j for different components j ∈ J i are clearly dependent because these components face the

common demand process of product i. To demonstrate the dependence, we consider two components

j, j̃ ∈ J i and a special case in which both of these components face the identical demand processes,

that is, Ij = Ij̃. Therefore, the demand size processes {Dj,k, k = 0, 1, . . .} and {Dj̃,k, k = 0, 1, . . .}
are identical, and the interarrival processes {Vj,k, k = 1, 2, . . .} and {Vj̃,k, k = 1, 2, . . .} are identical.

For simplicity, we use the demand process, i.e., the demand size process and the interarrival process,

associated with the component j for both components.

Because the inventory position vector of all components is uniformly distributed in S, IPj,1 is

independent of IPj̃,1. Hence,

P{Ki
j = 0, Ki

j̃ = 0} = P{Dj,0 > IPj,1, Dj,0 > IPj̃,1}

=
1

QjQj̃

Qj∑
qj=1

Qj̃∑
qj̃=1

P{Diai
j > rj + qj , D

iai
j > rj̃ + qj̃}. (7)

For k > 0, since IPj,k+1 is independent of IPj̃,k+1, and both of them are independent of future

demands,

P{Ki
j = k, Ki

j̃ = k} = P{IPj,k+1 − Dj,k <
k−1∑
l=0

Dj,l ≤ IPj,k, IPj̃,k+1 − Dj,k <
k−1∑
l=0

Dj,l ≤ IPj̃,k}
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=
1

QjQj̃

Qj∑
qj=1

Qj̃∑
qj̃=1

∞∑
y=max{qj ,qj̃}

P{Dj,k = y} ×

×P{rj + qj − y <
k−1∑
l=0

Dj,l ≤ IPj,k, rj̃ + qj̃ − y <
k−1∑
l=0

Dj,l ≤ IPj̃,k}, (8)

where IPj,k = rj + Qj − [Qj − qj + y] mod Qj and IPj̃,k = rj̃ + Qj̃ − [Qj̃ − qj̃ + y] mod Qj̃.

We now consider P{Kj = kj, Kj̃ = kj̃} for 0 < kj < kj̃. Since IPj̃,kj̃+1 is independent of

IPj,kj̃+1, and IPj̃,kj̃+1 is independent of the future demand sizes Dj,l for l = kj̃, . . . , 0, thus IPj̃,kj̃+1

is independent of IPj,kj+1. Combining this fact with Lemma 3.4, we can condition on IPj̃,kj̃+1 and

IPj,kj+1, and arrive at

P{Ki
j = kj, K

i
j̃ = kj̃} =

= P{IPj,kj+1 − Dj,kj <

kj−1∑
l=0

Dj,l ≤ IPj,kj , IPj̃,kj̃+1 − Dj,kj̃ <

kj̃−1∑
l=0

Dj,l ≤ IPj̃,kj̃}

=
1

QjQj̃

Qj∑
qj=1

Qj̃∑
qj̃=1

P{rj + qj − Dj,kj <

kj−1∑
l=0

Dj,l ≤ IPj,kj , rj̃ + qj̃ − Dj,kj̃ <

kj̃−1∑
l=0

Dj,l ≤ IPj̃,kj̃}. (9)

In view of Eq. (6), further conditioning on Dj,kj and Dj,kj̃ yields,

P{Ki
j = kj, K

i
j̃ = kj̃} =

=
1

QjQj̃

Qj∑
qj=1

Qj̃∑
qj̃=1

∞∑
mj=0

Qj+qj−1∑
dj=qj

P{Dkj = mjQj + dj}
∞∑

mj̃=0

Qj̃+qj̃−1∑
dj̃=qj̃

P{Dkj̃ = mj̃Qj̃ + dj̃} ×

×P{rj + qj − mjQj − dj <

kj−1∑
l=0

Dj,l ≤ rj + Qj + qj − dj,

rj̃ + qj̃ − mj̃Qj̃ − dj̃ <

kj̃−1∑
l=kj+1

Dj,l + mjQj + dj +
kj−1∑
l=0

Dj,l ≤ rj̃ + Qj̃ + qj̃ − dj̃}. (10)

Once we have the joint distribution of Ki
j and Ki

j̃, we can easily write out the joint probability

density function of Tj(Ki
j) and Tj̃(Ki

j̃). Let’s assume kj ≤ kj̃ without loss of generality. Since the

demand size process of the component j is independent of its inter-arrival time process, it follows

from Zhao and Simchi-Levi (2006) that conditioning on Ki
j = kj and Ki

j̃ = kj̃ yields,

P{Tj(kj) = tj , Tj̃(kj̃) = tj̃} = P{Tj(kj) = tj}P{Tj(kj̃ − kj) = tj̃ − tj}. (11)
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Eqs. (7)-(11) imply that the Ki
j and Ki

j̃, and the Tj(Ki
j) and T i

j̃ (Kj̃) are highly dependent due

to the common demand size process and the common interarrival time process faced by components

j and j̃. For the more general case where components j and j̃ satisfy Ij
⋂ Ij̃ �= ∅ but Ij �= Ij̃, the

exact form of the joint distribution of Kj and Kj̃, and of Tj(Kj) and Tj̃(Kj̃) are much more complex.

In what follows, we shall not characterize the joint probability density functions analytically for

the general case, but rather, we develop efficient numerical methods to estimate the key system

performance metrics (see Section 4). For this purpose, we need the exact sample-path expressions

for the system performance metrics.

Suppose that the demand size of product i ∈ I that arrives at time t is Di, we denote IP
i =

(IPj,1, j ∈ J i) to be the inventory position vector of the components j ∈ J i seen by this demand.

Clearly, IP
i is uniformly distributed in Si (Song 2000). Let X i(IP

i
, Di) be the delivery lead-time

of this demand given IP
i and Di. By Proposition 3.3,

X i(IP
i
, Di) = max

j∈J i
{[Lj − Tj(Kj(IPj,1, D

iai
j))]

+}. (12)

Let X i(z) be the delivery lead-time conditioning on Di = z. Then, the expected delivery lead-time

E(X i(z)) for i ∈ I can be characterized by

E(X i(z)) =
1∏

j∈J i

Qj

∑
qi∈Qi

E(X i(ri + qi, z)), (13)

where ri = (rj, j ∈ J i) and qi = (qj, j ∈ J i). The fill rate for a target service time τ ≥ 0 is given

by

P{X i(z) ≤ τ} = 1∏
j∈J i

Qj

∑
qi∈Qi P{X i(ri + qi, z) ≤ τ}

= 1∏
j∈J i

Qj

∑
qi∈Qi P{Lj − Tj(Kj(rj + qj , zai

j)) ≤ τ, ∀j ∈ J i}.
(14)

In the special case of Poisson demand and unit BOM matrix (i.e., ai
j = 0 or 1, ∀i, j), the random

vector (Kj(IPj,1, D
iai

j), j ∈ Ji) is uniformly distributed in Si (see Proposition 5.2 in Zhao and

Simchi-Levi 2006). However, this result does not hold for compound Poisson demand and general

BOM matrix because Kj(rj + qj, D
iai

j) now depends on demand size Diai
j and the batch ordering

policy (Proposition 3.3). Indeed, as we have shown before, the marginal and joint probability
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distribution of Kj(IPj,1, D
iai

j), j ∈ Ji for compound Poisson demand become much more complex

than their counter-parts for Poisson demand.

We next consider the system under the assumption of split orders. As opposed to the assumption

of non-split orders, each unit in a demand can now be satisfied separately. We now ask the following

key question (Zhao and Simchi-Levi 2006): suppose a demand of size y arrives at time t for a

component j ∈ J , and the demand sees the inventory position of this component at rj + qj , then

when is the corresponding order of this component placed that satisfies the nth unit of this demand?

where 1 ≤ n ≤ y.

Notice that inventories are committed to each demand unit in the same way under either split

orders assumption or non-split orders assumption. Thus, we can answer the above question by

considering a demand of size n in the non-split order case. That is,

Observation 3.5 Under the assumption of split orders, the corresponding order of the component j
that satisfies the nth unit of the demand that arrives at time t, is placed at time t−Tj(Kj(rj+qj , n)),
where Tj(·) and Kj(rj + qj , n) are defined in Proposition 3.3. Due to the replenishment lead-time,
the corresponding order of the component j is replenished at t − Tj(Kj(rj + qj , n)) + Lj, and the
delay of this component is [Lj − Tj(Kj(rj + qj, n))]+.

Clearly, Kj(rj + qj, n) is statistically different if n or rj + qj is different.

The performance measures of the ATO systems under the assumption of split orders can be

characterized in a similar way as those under the assumption of non-split orders. By Eq. (12), the

delivery lead-time for the nth unit of a demand for product i ∈ I is

X i(IP
i
, n) = max

j∈J i
{[Lj − Tj(Kj(IPj,1, nai

j))]
+}, (15)

where IP
i = (IPj,1, j ∈ J i) is uniformly distributed in Si. By Eqs. (13)-(14), the expected delivery

lead-time and the fill rate for the nth unit in a demand for product i are given by

E(X i(n)) =
1∏

j∈J i

Qj

∑
qi∈Qi

E(X i(ri + qi, n)), (16)

P{X i(n) ≤ τ} =
1∏

j∈J i

Qj

∑
qi∈Qi

P{X i(ri + qi, n) ≤ τ}

=
1∏

j∈J i

Qj

∑
qi∈Qi

P{Lj − Tj(Kj(rj + qj, nai
j)) ≤ τ, ∀j ∈ J i}. (17)
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We now compare the system performances between the case of split orders and the case of

non-split orders. To gain insight into the impact of order splitting, we first consider a single-

product single-component system. We name the component by j for convenience, and assume

that a demand of size y arrives at time t. In the case of split orders, the delivery lead-time for

the nth unit is [Lj − Tj(Kj(rj + qj, n))]+ where n = 1, 2, . . . , y; while in the case of non-split

orders, the delivery lead-times are identical for all units, that is [Lj −Tj(Kj(rj + qj , y))]+. Because

Tj(Kj(rj +qj , n)) ≥st Tj(Kj(rj +qj , y)) (by Proposition 3.3) where ≥st denotes the stochastic order,

the delivery lead-time in the former case is stochastically smaller than or equal to those in the later

case for any unit of demand.

To analyze the waiting time of the corresponding order, we introduce the following notation.

Let Lj,k be the lead-time of the order triggered by the kth most recent demand arrival prior to

t, where k = 1, 2, . . .. To simplify the notation, we uncondition on IPj,1 = rj + qj and replace

Kj(rj + qj , y) by Kj(y). In the case of split orders, the corresponding order that satisfies the nth

unit is replenished at time t − Tj(Kj(n)) + Lj,Kj(n). Therefore, the waiting time of this order is

[t − (t − Tj(Kj(n)) + Lj,Kj(n))]
+ = [Tj(Kj(n))− Lj,Kj(n)]

+. (18)

In the case of non-split orders, the corresponding order that satisfies the nth unit is replenished at

the same time as in the case of split orders, but the nth unit will not be filled until the last unit

(the yth unit) of the same demand is satisfied. Thus, the total waiting time of the corresponding

order that satisfies the nth unit is

[max{t, t − Tj(Kj(y)) + Lj,Kj(y)} − (t − Tj(Kj(n)) + Lj,Kj(n))]+

= [[Lj,Kj(y) − Tj(Kj(y))]+ + Tj(Kj(n)) − Lj,Kj(n)]+.

(19)

Comparing Eqs. (18)-(19), we can see that the waiting time of the corresponding order is

stochastically smaller under the assumption of split orders than that under the assumption of

non-split orders. In addition, the waiting time distribution of the corresponding order is easier to

characterize under the assumption of split orders than under the assumption of non-split orders.

This is true because the waiting time distribution of the former only depends on the marginal

distribution of Lj, while the waiting time distribution of the latter depends on the joint probability

distribution of Lj,k, k = 1, 2, . . .. Since characterizing the joint distribution of Lj,k requires an
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extension of the “stochastic sequential lead time” model, we shall leave the waiting time distribution

for a future study.

Applying the same logic to each component, the insights of the single-product single-component

system transfer to ATO systems. To quantify the impact of order splitting, we conduct a numerical

study in Section 5.

Finally, we study the impact of component dependence on system performance.

Proposition 3.6 For all j ∈ J i, define K ′
j(·, ·) to be independent copy of Kj(·, ·), that is, K ′

j(·, ·)
has the same marginal distribution as Kj(·, ·) but K ′

j(·, ·) are mutually independent. Then for any
l, q ∈ Q and τj ≥ 0, j ∈ J , as well as for all i ∈ I, we must have,

P{lj − Tj(Kj(rj + qj , n)) ≤ τj , j ∈ J i} ≥ P{lj − Tj(K ′
j(rj + qj , n)) ≤ τj, j ∈ J i} (20)

≥ Πj∈J iP{lj − Tj(K ′
j(rj + qj , n)) ≤ τj}. (21)

Proof. To prove inequality (20), we condition on the interarrival times of all products. First note

that the demand sizes of all products are associated because they are independent random variables

(Part (d) of Theorem 5.2.2 of Tong 1980). Furthermore, Kj(rj + qj , n) is a non-increasing function

of the demand sizes of all products, which implies that lj − Tj(Kj(rj + qj, n)) is non-decreasing

function of the demand sizes. It follows from Theorem 5.2.3 that conditioning on the interarrival

times of all products, lj −Tj(Kj(rj + qj , n)), ∀j ∈ J i are associated random variables for any i ∈ I,

and therefore, inequality (20) follows from Theorem 5.2.4 of Tong (1980). Unconditioning on the

interarrival times of all products yields the desired result.

To prove inequality (21), we further observe that the interarrival times of all products are

independent, thus they are associated. Conditioning on K ′
j(rj + qj , n) = kj for all j ∈ J i, Tj(kj)s

are associated because they are non-decreasing functions of the interarrival times. Finally, by

Theorem 5.2.4 of Tong (1980), unconditioning on K ′
j(rj + qj, n) yields the desired result.

Proposition 3.6 implies that ignoring the dependence among demand sizes or the dependence

among interarrival times or both results in stochastically larger delivery lead-times. Proposition 3.6

applies to ATO systems under either the split orders assumption or the non-split orders assumption.

In the former, the delivery lead-times are associated with demand of different sizes, while in the

latter, the delivery lead-times are associated with different units in one demand.
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4 Numerical Method

In this section, we develop a numerical method based-on Monte Carlo simulation to estimate the

expected delivery lead-times and the order-based fill rates for the ATO systems under either split

orders or non-split orders assumption. As we point out in Section 1, because Proposition 5.2 of

Zhao and Simchi-Levi (2006) does not hold here, the numerical method by that paper does not

directly apply. Interestingly, the numerical method can be modified to treat compound Poisson

processes and general BOM matrix, as shown in this section.

The key difference between Poisson demand and compound Poisson demand is the demand size

processes, which significantly complicates the analysis of the joint probability distribution of the de-

livery lead-times but can be randomly sampled without significantly more effort. Furthermore, the

logic of the numerical method by Zhao and Simchi-Levi (2006) applies here with some modification

on the way that Kj is calculated.

Due to the similarity between Eqs. (13)-(14) and Eqs. (16)-(17), we shall focus on the systems

under the assumption of non-split orders in the rest of this section. The numerical method can be

easily modified to handle split-orders. To develop efficient numerical method to estimate E(X i(z))

and P{X i(z) ≤ τ} for a particular z, we first re-write Eqs. (13)-(14) as follows,

E(X i(z)) = E(
1∏

j∈J i

Qj

∑
qi∈Qi

X i(ri + qi, z)) = E(X̃ i(z)), (22)

P{X i(z) ≤ τ} = E(
1∏

j∈J i

Qj

∑
qi∈Qi

1{Lj−Tj(Kj(rj+qj ,zai
j))≤τ,∀j∈J i}) = E(Ξi(τ, z)), (23)

where,

X̃ i(z) =
1∏

j∈J i

Qj

∑
qi∈Qi

X i(ri + qi, z) (24)

Ξi(τ, z) =
1∏

j∈J i

Qj

∑
qi∈Qi

1{Lj−Tj(Kj(rj+qj ,zai
j ))≤τ,∀j∈J i}. (25)

and 1{Lj−Tj(Kj(rj+qj ,zai
j ))≤τ,∀j∈J i} is the indicator function of the event {Lj −Tj(Kj(rj +qj , zai

j)) ≤
τ, ∀j ∈ J i}. Note that X̃ i(z) is an expansion of X i(z) in the form of the total probability condi-
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tioning on the inventory position vector. Because X̃ i(z) and X i(z) have the same mean, we shall

estimate the former.

To estimate X̃ i(z), we utilize Eq. (24) and thus Eq. (12). Note that the stochastic sequential

lead time assumption is embedded in Eq. (12), which allows us to use a simple sampling method as

follows: To get a sample of X̃ i(z), we keep track of one demand arrival of product i as well as the

corresponding replenishment of each component that satisfies this demand. By Eq. (12), we only

need to generate one sample for the lead time of each component, and at most maxj∈J {rj + Qj}
many samples for each product demand arrivals.

For random variables X i(z), X i(ri + qi, z), X̃ i(z), Ξi(τ, z), Lj , Tj(·) and Kj(·, ·), we use the

following notation to denote their samples, xi(z), xi(ri + qi, z), x̃i(z), ξi(τ, z), lj, tj(·) and kj(·, ·).
Eqs. (24)-(25) imply that we can generate a common sample of the lead-times and demand processes

for X i(ri + qi, z) with different qi ∈ Qi, as follows,

1. Sampling lead times. Generate a sample of Lj, lj, independently for all j ∈ J .

2. Sampling product demand arrivals. For each product i ∈ I, sample the demand inter-arrival

times and demand sizes for maxj∈J {rj + Qj} many demand arrivals.

3. Calculating demand arrival process for each component. For each component j ∈ J, super-

impose the demand processes of all products i ∈ Ij to determine the demand process for

component j. Then determine kj(rj +qj , zai
j) according to Proposition 3.3, and consequently

tj(kj(rj + qj, zai
j)) for each qj ∈ Qj.

4. Calculating delays for each component. Finally, for each component j, compute lj − tj(kj(rj +

qj, zai
j)) for each qj ∈ Qj .

Based on the common sample, we design an efficient numerical method, namely Method A-CP

(where CP stands for Compound Poisson demand), to compute

x̃i(z) =
1∏

j∈J i

Qj

∑
qi∈Qi

xi(ri + qi, z), (26)

where xi(ri + qi, z) = maxj∈J i{[lj − tj(kj(rj + qj, zai
j))]

+}.
Method A-CP is based on the following observation. Given a particular sample lj − tj(kj(rj +

qj , zai
j)) > 0, there may exist multiple qi ∈ Qi such that xi(ri + qi, z) = lj − tj(kj(rj + qj, zai

j)).
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For instance, suppose in one sample, l1 − t1(k1(r1 + q0, zai
j)) = maxqi∈Qi{lj − tj(kj(rj + qj, zai

j))}
for a q0, then for all qi such that q1 = q0, xi(ri + qi, z) = l1 − t1(k1(r1 + q0, zai

j)). We refer the

reader to Zhao and Simchi-Levi (2006) for more discussions.

Method A-CP:

1. Sort the real numbers [lj − tj(kj(rj + qj , zai
j))]

+, ∀qj ∈ Qj and ∀j ∈ J i into a non-increasing

sequence, and denote the sequence by δi
n, n = 1, 2, · · · , ∑j∈J i Qj.

2. Set n = 1, x̃i(z) = 0 and Rj = Qj, ∀j ∈ J i.

3. If δi
n = 0, output x̃i(z) and stop.

Otherwise, identify the corresponding component associated with δi
n, namely, jn.

Then add all xi(ri + qi, z) which equals to δi
n by

x̃i(z) = x̃i(z) + δi
n ×

∏
j �=jn,j∈J i

Rj/
∏

j∈J i

Qj , (27)

and delete δi
n by

Rjn = Rjn − 1. (28)

If Rjn = 0, output x̃i(z) and stop; otherwise, n = n + 1, and repeat this step.

Clearly, Method A-CP always stops before n reaches
∑

j∈J i Qj because Rj for some j ∈ J i will

reach zero before n reaches
∑

j∈J i Qj . In view of Eq. (24), the variance of a random sample of

X̃ i(z) is bounded from above by the maximum variance of X i(ri + qi, z) over all qi ∈ Qi.

We now analyze the computational complexity of Method A-CP. Given the sample size, the

computing time for generating the lead-times, inter-arrival times, and superimposing demand pro-

cesses is at most proportional to |J |+ |I| ×maxj∈J {rj + Qj}+ |I| ×∑
j∈J (rj + Qj). Calculating

kj(rj + qj , zai
j) for all qj and j requires a computing time at most proportional to |J |maxj∈J {rj +

Qj}maxj∈J Qj. Computing [lj − tj(kj(rj + qj, zai
j))]

+, ∀qj, ∀j and sorting these numbers require

a computing time proportional to
∑

j∈J i(rj + Qj) and (
∑

j∈J i Qj)log(
∑

j∈J i Qj)) respectively.

Finally, Step 3 takes a computing time at most proportional to
∑

j∈J Qj. Thus, the overall

computational effort for generating a sample of X̃ i(z) for all i ∈ I is at most proportional to

|I| × ∑
j∈J (rj + Qj) + |J |maxj∈J {rj + Qj}maxj∈J Qj + |I| × (

∑
j∈J Qj)log(

∑
j∈J Qj).
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We next design an efficient numerical method, namely Method B-CP, to compute

ξi(τ, z) =
1∏

j∈J i

Qj

∑
qi∈Qi

1{lj−tj (kj(rj+qj ,zai
j))≤τ,∀j∈J i}. (29)

Method B-CP:

1. For each component j ∈ Ji, count the number of qj ∈ Qj so that lj − tj(kj(rj + qj , zai
j)) ≤ τ ,

and denote it by Q′
j,

2. Calculate ξi(τ, z) =
∏

j∈J i Q′
j/

∏
j∈J i Qj.

Method B-CP is based on the fact that 1{lj−tj(kj(rj+qj ,zai
j))≤τ,∀j∈J i} = 1 if and only if lj −

tj(kj(rj + qj , zai
j)) ≤ τ for all j ∈ J i. Given the sample size, the computational complexity of

Method B-CP is proportional to |I| × ∑
j∈J Qj + |I| × |J |. The variance of a random sample of

Ξi(τ, z) generated by Method B-CP is less than the maximum variance of the indicator functions

1(X i(ri + qi, z) ≤ τ) over qi ∈ Qi.

5 A Numerical Study

In order to study the efficiency of the proposed numerical method and the impact of order splitting,

we consider a numerical example motivated by a real world problem: the Dell Dimension 3000

desktop computer for small business (see http://zhao.rutgers.edu/ for more information). The

computer has 27 categories of components or softwares which can be customized; among which,

15 categories are non software related. We choose to focus on 12 out of these 15 categories which

seem to be necessary for most computers. Each category has multiple options for customization.

The categories (number of options) are, processor (4), memory (3), keyboard (3), mouse (3), hard

disk (2), CD or DVD (10), Monitor (2), sound card (2), floppy & memory keys (7), speakers (4),

modem (3) and wireless routers (4). The total number of options is 47.

Due to the lack of demand and supply data, we construct the example as follows. We first

create demand types (i.e., products) in the following way: We assume that there exists a demand

type that chooses all the base-line options. We also assume that for every category, there exists

a demand type that chooses an option other than the baseline only in that category; We further

assume that for every two categories, there exits a demand that chooses options other than the
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baselines only in those two categories. Thus, the total number of demand types (or products) is

567.

For each component, we assume that the replenishment lead-time follows Erlang distribution

with E(Lj) being randomly generated from uniform(0.1, 1) and nj from uniform{4, 5, . . . , 16}
(see Zipkin 2000 pg. 457 for the definition of nj). The re-order points rj = r̃j × β, j ∈ J where

r̃j, j ∈ J are randomly generated from uniform{1, 2, 3, 4} and β ∈ {1, 2, 4, 6, 8}. The ordering

quantities Qj , j ∈ J are randomly generated by uniform{4, 5, 6, 7, 8}. Therefore, the maximum

possible rj +Qj is 40, which is the largest value that we can choose due to the memory limit of my

laptop computer.

For each demand type (or product), the demand size follows uniform distribution in {1, 2, . . . , ui}
where ui is randomly generated by uniform{2, 3, . . . , 8}. The demand arrival rate λi is generated

randomly by uniform(0.1, 1)× λ̃, where λ̃ = 0.02 is chosen so that the weighted fill-rates across

all products (see Eqs. (35) and (37)) fall in a range of practical interests. Due to the large number

of products, the cumulative arrival rates for a component may be significant unless the arrival rate

of each product is sufficiently small. Finally, it is reasonable to assume, in this example, that each

element of the BOM matrix, ai
j, equals either 1 or 0.

The computation is conducted on a laptop computer with Pentium 4 processor, 1.68 GHZ,

and 256 MB memory. Generating 10000 samples of the delivery lead-time X i(z) for all i ∈ I
and a particular z takes no more than 10 minutes. In the special case of Poisson demand and

base-stock policy, Zhao and Simchi-Levi (2006) reports that 3-4 minutes computing time is needed

for a slightly smaller example on the same computer. Comparing these examples, it is clear that

the increment in the computing time from base-stock policy and Poisson demand to batch-ordering

policy and compound Poisson demand is moderate, and the numerical method proposed here can

handle problems of real world sizes.

To quantify the impact of order splitting in ATO systems, we compute the expected delivery

lead-time and the order-based fill-rate for a randomly picked demand unit in both the case of split

orders and the case of non-split orders. More specifically, in the case of split orders, we compute,

for each i ∈ I,

E(X i) =
∑
z≥1

P{Di ≥ z}/E(Di) × E(X i(z)), (30)
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Figure 1: The impact of order splitting.

P{X i ≤ τ} =
∑
z≥1

P{Di ≥ z}/E(Di) × P{X i(z) ≤ τ}, (31)

where τ ≥ 0 is the committed service time, and P{Di ≥ z}/E(Di) is the probability that a

randomly picked unit is the zth unit of a demand (Sigman 2001). In the case of non-split orders,

we compute, for each i ∈ I,

E(X̂ i) =
∑
z≥1

zP{Di = z}/E(Di)× E(X i(z)), (32)

P{X̂ i ≤ τ} =
∑
z≥1

zP{Di = z}/E(Di)× P{X i(z) ≤ τ}, (33)

where zP{Di = z}/E(Di) is the probability that a randomly picked unit is in a demand of size z

(Sigman 2001). Finally, we compute the weighted expected delivery lead-times and fill-rates for a
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randomly picked demand unit as follows:

E(X) =
∑
i∈I

[E(X i) × λiE(Di)]/
∑
i∈I

[λiE(Di)] (34)

P{X ≤ τ} =
∑
i∈I

[P{X i ≤ τ} × λiE(Di)]/
∑
i∈I

[λiE(Di)] (35)

E(X̂) =
∑
i∈I

[E(X̂ i) × λiE(Di)]/
∑
i∈I

[λiE(Di)] (36)

P{X̂ ≤ τ} =
∑
i∈I

[P{X̂ i ≤ τ} × λiE(Di)]/
∑
i∈I

[λiE(Di)]. (37)

For τ = 1, the numerical results are demonstrated in Table 1 and Figure 1. The 95% confidence

intervals of the weighted expected delivery lead-times (or the fill-rates) have lengths less than 0.02

(2%, respectively). First, we notice that the weighted expected delivery lead-times (the fill-rates)

in the case of split orders are always smaller (greater, respectively) than the counter-parts in the

case of non-split orders. In the range of fill-rates of interests, we observe that as the weighted

fill-rate increases, the gap between the fill-rates of the split and non-split cases decreases, but the

percentage difference in the weighted expected delivery lead-times increases. Finally, the impact of

order splitting can be quite substantial, e.g., the second row/last column of Table 1 shows a 11.67%

difference in fill-rates, and the last row/second last column shows a nearly 20% difference in the

expected delivery lead-times.

Table 1: Impact of order splitting

β E(X) E(X̂) P {X ≤ τ} P {X̂ ≤ τ} [E(X) − E(X̂)] P {X ≤ τ} − P {X̂ ≤ τ}
(split) (non-split) (split) (non-split) /E(X̂)

1 0.885 0.99 62.41% 50.74% −10.58% 11.67%
2 0.722 0.824 76.07% 67.60% −12.35% 8.47%
4 0.471 0.558 89.48% 85.15% −15.56% 4.33%
6 0.306 0.372 94.89% 92.76% −17.52% 2.13%
8 0.204 0.253 97.15% 95.93% −19.16% 1.22%

6 Conclusion

ATO systems with both batch ordering policy and batch demand can often be found in practice.

These systems are also known to be challenging both analytically and computationally. In this
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paper, we demonstrate that while the combination of batch ordering policy and compound Poisson

demand increases significantly the analytical complexity, such a system of real-world sizes is still

numerically tractable given that the memory requirement for storing the BOM matrix can be met.

We should point out that the same numerical method can also be used to estimate inventory costs

for the case of split orders. However, for the case of non-split orders, one requires an additional

piece of information – the joint probability distribution of consecutive lead-times for each component

(Section 3).

In practice, of course, economies of scale in production or transportation costs may drive batch

ordering policies across a supply chain beyond the assembly system. Therefore, one important

direction for future research is to extend the analysis to general multi-level supply chains that in-

clude both assembly and distribution operations. As Axsater (2003) points out, exact evaluation

of multi-level distribution systems alone with batch ordering policies and compound Poisson de-

mand is computationally prohibitive. Therefore, we expect that accurate approximations should

be developed to efficiently evaluate and optimize these supply chains.
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